CHAPTER-9 DIFFERENTIAL EQUATIONS 01 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Solution of differential equation $xdy - ydx = Q$ represents:	1
	(a) a rectangular hyperbola	
	(b) parabola whose vertex is at the origin	
	(c) straight line passing through the origin	
	(d) a circle whose centre is at the origin	
2.	Given the differential equation $\frac{dy}{dx} = \frac{6x^2}{2y + cosy}$ $y(1) = \pi$	1
	(a) Solution is $y^2 - siny = -2x^3 + c$	
	(b) Solution of $y^2 + siny = 2x^3 + c$	
	(c) $C = \pi^2 + 2$ (d) $C = \pi^2 - 2$	
3.	The differential equation of all parabolas whose axis of symmetry is along the axis of the x- axis is of order	1
	(a) 3	
	(b) 1	
	(c) 2	
4	(d) none of these	1
4.	The degree of the equation satisfying the relation $\sqrt{1 + \sqrt{2}} = \sqrt{1 + \sqrt{2}}$	1
	$\sqrt{1+x^2} + \sqrt{1+y^2} = \lambda x (\sqrt{1+y^2} - y(\sqrt{1+x^2}))$	
	(a) 1 (b) 2	
	$(C)^{-2}$	
	(d)4	
5.	The order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^{\frac{1}{4}} + x^{\frac{1}{5}} = 0$	1
	Respectively are	
	(a) 2 and not defined	
	(b) 2 and 2	
	(c)2 and 3 (d)2 and 2	
6.	(d)3 and 3 Integrating factor of the differential equation $\frac{dy}{dx} + ytanx - secx = 0$ is	1
	(a) $cosx$	
	(b) secx	
	(c) e^{cosx}	
	(d) e^{secx}	
7.	The number of arbitrary constants in the particular solution of a differential equation of third	1
	order is: (a) 3	
	(a) $\frac{3}{5}$ (b) 2	

	(c) 1 (d) 0	
8.	The differential equation satisfied by $y = \frac{A}{x} + B$ is (A, B are parameters) (a) $x^2y_1 = y$ (b) $xy_1 + 2y_2 = 0$ (c) $xy_2 + 2y_1 = 0$ (d) none	1
9.	The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is: (a)Ellipse (b)Parabola (C) Circle (d) Rectangular hyperbola	1
10.	The order of differential equations of all circles of given radius 4 (a) 3 (b) 2 (c) 1 (d) 0	1
11.	The differentilequation y log y dx – xdy =0 is (i) variable separable differential equation (ii) homogeneous differential equation (iii)First order linear differential equation	1
	(iv) none of these	
12.	The integrating factor of the differential equation $x\frac{dy}{dx} + y = x^3$ is (i) x (ii) logx (iii) i/x (iv0 none of these	1
13.	The degree of the differential equation $x^2 + (\frac{dy}{dx})^2 = 5$ i (i) 2 (ii) 3 iii) 1 (iv)none of these	1
14.	A solution of the differential equation $(\frac{dy}{dx})^2 - x\frac{dy}{dx} + y = 0$ is (i)y=2 (ii) y=2x (iii) y=2x-4 (iv)none of these	1
15.	The integrating factor of $\frac{dy}{dx}$ - y=1 is (i) e ^x (ii) e ^{-x} (iii) -e ^{-x} (iv) none of these	1
16.	The sum of the order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3$ = siny is (i)1 (ii)2 (iii) 3 (iv) 4	1
17.	What is the product of the order and degree of the differential equation $\frac{d^2y}{dx^2}siny + \left(\frac{dy}{dx}\right)^3 \cos y = \sqrt{y}$	1

	(i)3 (ii) 2 (iii) 6 (iv) not defined	
18.	The solution of the differential equation $2x \frac{dy}{dx}$ y = 3 represents a family of (i) Straight lines (ii) circles (iii) parabolas (iv) ellipses	1
19.	The general solution of the differential equation $xdy -(1+x^2) dx=x$ is (i)y= 2x+ x ³ /3 + C (ii) y= 2logx+ x ³ /2 + C (iii)y= 2x+ x ² /3 + C y= x ² /2 + C (iv) none of these	1
20.	The solution of $\frac{dy}{dx}$, $y = 1$, $y(0) = 1$ is given by (i)xy=-e(ii)xy=-e ^{-x} (iii)xy=-1 (iv) y=2e ^x - 1	1
21.	The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$, is a)3 b)2 c)1 b)2 d)not defined	1
22.	The degree of the differential equation $x=1 + \frac{dy}{dx} + \frac{1}{2!} \left(\frac{dy}{dx}\right)^2 + \frac{1}{3!} \left(\frac{dy}{dx}\right)^3 + \dots, \text{is}$ a)3 b)1 c)not defined d)none of these	1
23.	The order of the differential equation $\left(\frac{d^2r}{dt^2}\right)^2 + 3\left(\frac{dr}{dt}\right)^3 + 4 = 0$ is a)2 b)1 c)3 d)4	1
24.	The differential equation $\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} = \left(y + \frac{dy}{dx}\right)^{\frac{1}{2}}$ is of a)second order ,fourth degree b)first order, fourth degree c)second order, third degree d)second order ,second degree	1
25.	The number of arbitrary constants in the general solution of a differential equation of fourth order area)0b)2c)3d)4	1
26.	The order of the differential equation whose general solution is given by $y=(c_1+c_2)\sin(x+c_3)-c_4e^{x+c_5}$ is	1
	a)5 b)4 c)3 d)2	
27.	The solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$ is	1

	a) $\tan^{-1} x + \cot^{-1} x = C$	
	b) $\sin^{-1} x + \sin^{-1} y = C$	
	c) $\sec^{-1}x + \csc^{-1}x = C$	
	d) none of these	
28.	The number of arbitrary constants in the particular solution of a differential equation of third	1
	order are	
	a)3 b)2 c)1 d)0	
29.	Which of the following is a homogeneous differential equation?	1
25.	(A) $(4x+6y+5) dy-(3y+2x+4) dx=0$	1
	(B) $(xy)dx - (x^3 + y^3) dy = 0$	
	(C) $(x^3 + 2y^2) dx + 2xy dy = 0$	
	(D) $y^2 dx + (x^2 - xy - y^2) dy = 0$	
30.	The Integrating Factor of the differential equation	1
	$x\frac{dy}{dx} - y = 2x^2$ is	
	(A) e^{-x} (B) e^{-y}	
	(C) 1/x (D) x.	
31.	The sum of order and degree of the differential equation $x^3 \left(\frac{d^2 y}{dx^2}\right)^2 + x \left(\frac{dy}{dx}\right)^4 = 0$ is	1
	The sum of order and degree of the differential equation $x \left(\frac{1}{dx^2}\right)^2 + x \left(\frac{1}{dx}\right)^2 = 0$ is	
	(a) 6 (b) 2 (c) 4 (d) 3	
32.	The order and degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/4} + x^{1/5} = 0$ respectively are	1
	(a) 2 and 4 (b) 2 and 2 (c) 2 and 3 (d) 3 and 3	
33.	Which of the following is a second order differential equation?	1
33.	Which of the following is a second order differential equation? (a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$	1
33.		1
	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$	
33. 34.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth	1
	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:	
	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y'' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:(a) 0(b) 2(c) 3(d) 4	
34.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:	1
34.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y'' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:(a) 0(b) 2(c) 3(d) 4The numbers of arbitrary constant in the particular solution of a differential equation of second order are:	1
34.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y'' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:(a) 0(b) 2(c) 3(d) 4The numbers of arbitrary constant in the particular solution of a differential equation of second order are:	1
34. 35.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y'' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:(a) 0(b) 2(c) 3(d) 4The numbers of arbitrary constant in the particular solution of a differential equation of second order are:(a) 0(b) 2(c) 3(d) 4A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function	1
34. 35.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4 The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential	1
34. 35.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4 The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree :	1
34. 35. 36.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4 The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree : (a) 0 (b) 1 (c) 2 (d) not defined	1 1 1
34. 35.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4 The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree :	1
34. 35. 36.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4 The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree : (a) 0 (b) 1 (c) 2 (d) not defined	1 1 1
34. 35. 36.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4 The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree : (a) 0 (b) 1 (c) 2 (d) not defined The integrating factor of differential equation $\cos x \frac{dy}{dx} + ysinx = 1$ is	1 1 1
34. 35. 36. 37.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:(a) 0(b) 2(c) 3(d) 4The numbers of arbitrary constant in the particular solution of a differential equation of second order are:(a) 0(b) 2(c) 3(d) 4A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree :(a) 0(b) 1(c) 2(d) not definedThe integrating factor of differential equation $\cos x \frac{dy}{dx} + ysinx = 1$ is(a) $\cos x$ (b) $\tan x$ (c) $\sec x$ (d) $\sin x$ (c) $\sin x$	1 1 1 1 1
34. 35. 36. 37.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are: (a) 0 (b) 2 (c) 3 (d) 4 The numbers of arbitrary constant in the particular solution of a differential equation of second order are: (a) 0 (b) 2 (c) 3 (d) 4 A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree : (a) 0 (b) 1 (c) 2 (d) not defined The integrating factor of differential equation $\cos x \frac{dy}{dx} + ysinx = 1$ is (a) $\cos x$ (b) $\tan x$ (c) $\sec x$ (d) $\sin x$ The solution of differential equation x dy-y dx=0 represents	1 1 1 1 1
34. 35. 36. 37.	(a) $(y')^2 + x = y^2$ (b) $y'y'' + y = sinx$ (c) $y''' + (y'')^2 + y = 0$ (d) $y' = y^2$ The numbers of arbitrary constant in the general solution of a differential equation of fourth order are:(a) 0(b) 2(c) 3(d) 4The numbers of arbitrary constant in the particular solution of a differential equation of second order are:(a) 0(b) 2(c) 3(d) 4A differential equation of the form $\frac{dy}{dx} = F(x, y)$ where $F(x, y)$ is a homogeneous function of degree zero. Differential equation of the form $\frac{dy}{dx} = f(\frac{x}{y})$ is a homogeneous differential equation of degree :(a) 0(b) 1(c) 2(d) not definedThe integrating factor of differential equation $\cos x \frac{dy}{dx} + ysinx = 1$ is(a) $\cos x$ (b) $\tan x$ (c) $\sec x$ (d) $\sin x$ (c) $\sec x$ (d) $\sin x$ The solution of differential equation $x dy \cdot y dx=0$ represents(a) a rectangular hyperbola(b) parabola whose vertex is at origin(c) straight	1 1 1 1 1

	(c) Both a and b (d) $f(x, y) = x^{-n} f\left(\frac{y}{x}\right)$	
40.	For what value of n is the following a homogeneous differential equation : $\frac{dy}{dx} = \frac{x^3 - y^n}{x^2 y + xy^2}$	1
	(a) 4 (b) 3 (c) 2 (d) 1	
41.	The order and degree of the differential equation $x^2 \frac{d^2 y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^4$ is	1
	A. 1, 1	
	B. 2,4	
	C. 2, 1 1, 4	
42.	The order and degree of the differential equation $x^3 \left(\frac{d^2 y}{dx^2}\right)^2 + x \left(\frac{dy}{dx}\right)^4 = 0$ is	1
	A. 2, 1	
	B. 2, 2 C. 4, 2	
	C. 4, 2 2. 2	
43.	The degree of the differential equation $\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 = 2x^2\log\left(\frac{d^2y}{dx^2}\right)$ is	1
	A. 2	
	B. 1	
	C. Not Defined	
44.	The order and degree of the differential equation $\left(\frac{d^4y}{dx^4}\right)^2 = \left\{x + \left(\frac{dy}{dx}\right)^2\right\}^3$ is	1
	A. 2, 2	
	B. 2,4	
	C. 2, 6	
45.	$\frac{4}{2}$	1
	The sum of the degree and the order of the following differential equation: $\frac{d}{dx} \left[\left(\frac{d^2 y}{dx^2} \right)^4 \right] = 0$ is	
	A. 6 B. 3	
	C. 5	
46.	$\frac{4}{(dy)^3} \frac{d^2y}{d^2y}$	1
40.	The sum of the order and degree of the following differential equation: $y = x \left(\frac{dy}{dx}\right)^3 + \frac{d^2y}{dx^2}$ is	1
	A. 5 B. 4	
	C. 3	
47.	2 The integrating factor of the differential equation $x \frac{dy}{dx} - 2y = 2x^2$ is	1
	A. $\frac{1}{x}$ B. $\frac{1}{x^2}$	
	B. $\frac{1}{x^2}$ C. lnx	
	e^x	
48.	The integrating factor of the differential equation $(y - x)dy = (1 + y^2)dx$ is	1
	A. $e^{\tan^{-1}x}$ B. $e^{\tan^{-1}y}$	
	B. $e^{\operatorname{cm} y}$ C. $\tan^{-1} x$	
	$\tan^{-1} y$	
49.	The number of arbitrary constants in the general solution of a fourth order differential	1

	e medien in	
	equation is A. 0	
	B. 2	
	C. 3	
	4	
50.	The number of arbitrary constants in the particular solution of a fourth order differential	1
	equation is A. 0	
	B. 2	
	C. 3	
	4	
51.	Determine the order of differential equation	1
	$\frac{d^4y}{dx^4} + \tan(y^{\prime\prime}) = 5$	
	$\frac{1}{dx^4} + \tan(y^4) = 5$	
	(A)4 (B) 2 (C) 1 (D) Not Defined	
52.		1
	Check which of the given function is a solution of the following differential	
	equation	
	$y^{\prime\prime} - y^{\prime} = 0$	
	(A) $y = \sqrt{1 + x^2}$	
	(A) $y = \sqrt{1 + x}$ (B) $y = e^x + 1$	
	(b) $y = e^{-y} + 1$ (C) $xy = \log y + C$	
	$(D)y - \cos y = x$	
53.	The number of arbitrary constants in the general solution of a differential	1
	equation of third order are	
	0 (B) 2 (C) 4 (D) 3	
54.	Find the degree of the following differential equation	1
	$\left(\frac{d^2 y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$	
	$(A)_2$ (P) 1 (C) (D) Not Defined	
55.	(A)2 (B) 1 (C) (D) Not Defined	1
55.	A homogeneous differential equation of the form	1
	$\frac{dy}{dx} = f(\frac{y}{x})$ can be solved by making the substitution	
	(A) y = vx	
	(B) $v = yx$	
	(C) $x = vy$	
	(D)y = v	
56.	The Integrating factor of the differential equation	1
	$(1+x^2)\frac{dy}{dx} + 2xy = \frac{1}{1+x^2}$	
	is	
	(A) $1 - x^2$	

1
1
L L
1
-
tial 1
1
1
1
1

	(c)2 and 1	
	(d)1 and 3	
64.	The order and degree (if defined) of the differential equation	1
	$d^{2}y/dx^{2} + x(d\frac{dy}{dx})^{2} = 2x^{2}\log(d^{2}y/dx^{2})$	
	(a)2 and 3	
	(b)2 and 1	
	(c)2 and not defined	
	(d) None of these	
65.	The number of arbitrary constants in the particular solution of a differential equation of	
03.	second order is(are)	1
	(a)0	
	(b)1	
	(c)2	
	(d)3	
66.	The differential equation	1
	$Y \frac{dy}{dx} + x = C$ represents	
	(a) family of hyperbolas	
	(b)family of parabolas	
	(c)family of ellipses	
	(d)family of circles	
67.	Which of the following is not a homogeneous function of x and y	1
	$(a)x^2+2xy$	
	(b)2x - y	
	$(c)\cos^2(\frac{y}{x}) + \frac{y}{x}$	
	(d)sinx -cosy	
68.	If the slope of the tangent to the curve at any point P(x,y) is $\frac{y}{x} - \cos^2 \frac{y}{x}$, then the equation of a	1
	curve passing through $(1, \frac{\pi}{4})$	
	is 4	
	$(a)\tan(\frac{y}{x}) + \log x = 1$	
	λ	
	(b)tan $\left(\frac{y}{x}\right)$ +logy = 1	1
	$(c)\tan(\frac{\tilde{x}}{y}) + \log x = 1$	
	$(d)\tan(\frac{x}{y}) + \log y = 1$	
69.	The integrating factor of	1
	$(\sin x)\frac{dy}{dx}$ + $(2\cos x)y$ =sinxcosx is	
	(a)secx	
	$(b)(sinx)^2$	
	$(c)(cosecx)^2$	
	$(d)(tanx)^2$	
70.	The general solution of the differential equation	1
	$e^{2x}\frac{dy}{dx}$ +3 $e^{2x}y = 1$ is	
	$\int_{a}^{dx} (a)ye^{3x} = e^x + C$	
	$(b)ye^{3x} = e^{-x} + C$	
	$(c)ye^{3x} = -e^x + C$	
	$(d)ye^{x} = e^{3x} + C$	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	с	1
2.	b	1
3.	c	1
4.	a	1
5.	a	1
6.	b	1
7.	d	1
8.	c	1
9.	d	1
10.	b	1
11.	i i	1
12.	iii	1
13. 14.	iii	1
14.	ii	1
15.	iii	1
10.	ii ii	1
18.	i	1
19.	iv	1
20.	iv	1
21.	D	1
22.	С	1
23.	A	1
24.	A	1
25.	D	1
26.	С	1
27.	В	1
28.	D	1
29.	D	1
30.	С	1
31.	С	1
32.	A	1
33.	В	1
34.	D	1
35.	Α	1
36.	В	1
37.	c	1
38.	c	1
39.	c	1
40.	B	1
41.	Order = 2, Degree = 1	1
42.	Order = 2, Degree = 2	1
43.	Degree = Not Defined	1

44.	Order = 4, $Degree = 2$	1
45.	$\frac{d}{dx}\left[\left(\frac{d^2y}{dx^2}\right)^4\right] = 0$	1
	$\implies 4.\left(\frac{d^2y}{dx^2}\right)^3.\frac{d^3y}{dx^3} = 0$	
	$\implies \left(\frac{d^2y}{dx^2}\right)^3 \frac{d^3y}{dx^3} = 0$	
	Order = 3, Degree = 1	
46.	Order + Degree = 3 + 1 = 4 Order + Degree = 2 + 1 = 3	1
40.		1
	$x\frac{dy}{dx} - 2y = 2x^2$	
	$\Rightarrow \frac{dy}{dt} - \frac{2y}{dt} = 2x \dots (i)$	
	$\Rightarrow \frac{dy}{dx} - \frac{2y}{x} = 2x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$	
	$\frac{dy}{dx} + Py = Q \dots (ii)$	
	On comparison, we get	
	$P = -\frac{2}{x}, Q = 2x$	
	x Integrating Factor (I. F) = $e^{\int p dx} = e^{\int \frac{-2dx}{x}} = e^{-2\log x } = e^{\log \frac{1}{x^2} } = \frac{1}{x^2}$	
	x ²	
48.	$(\tan^{-1} y - x)dy = (1 + y^2)dx$	1
	$\Rightarrow (\tan^{-1} y - x) = (1 + y^2) \frac{dx}{dy}$	
	$dx (\tan^{-1} y - x)$	
	$\Rightarrow \frac{du}{dy} = \frac{(du)(y+y^2)}{(1+y^2)}$	
	$\Rightarrow \frac{dx}{dy} = \frac{(\tan^{-1}y - x)}{(1 + y^2)}$ $\Rightarrow \frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{\tan^{-1}y}{1 + y^2} \dots (i)$	
	$\Longrightarrow \frac{dy}{dy} + \frac{1}{1+y^2} = \frac{1}{1+y^2} \dots (l)$	
	$\frac{dx}{dy} + Px = Q \dots (ii)$	
	On comparison, we get $1 \tan^{-1} y$	
	$P = \frac{1}{1+y^2}, Q = \frac{\tan^{-1} y}{1+y^2}$	
	Integrating Factor (I. F) = $e^{\int p dy} = e^{\int \frac{dy}{1+y^2}} = e^{\tan^{-1}y}$	
49.	Integrating Factor (I. F) = $e^{\int p dy} = e^{e^{-1+y^2}} = e^{tan^2-y^2}$	1
<u>49.</u> 50.	0	1
51.	A	1
52.	В	1
53.	D	1
54.	D	1
55.	Α	1
56.	С	1
57.	С	1
58.	С	1
59.	A	1
60.	D	1
L		L

61.	(a)	1
62.	(b)	1
63.	(a)	1
64.	(c)	1
65.	(a)	1
66.	(d)	1
67.	(d)	1
68.	(a)	1
69.	(b)	1
70.	(a)	1

CHAPTER-9 DIFFERENTIAL EQUATIONS 02 MARKS TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Find the differential equation representing the family of curves $y = ae^{2x} + 5$ constant.	2
2.	Form the differential equation of the family of hyperbolas having foci On x-axis and center at origin	2
3.	Form the differential equation representing the family of curves $y = a \sin (x + b)$, where a ,b are arbitrary constant.	2
4.	Find the solution of $dy/dx = 2^{y^-}$.	2
5.	Find a particular solution satisfying the given condition (X+y)dy + (x-y)dx=0 Y=1 when x=1	2
6.	Given that $dy/dx = e - 2y$ and y = 0 when x = 5 Find the value of x when y = 3	2
7.	Solve the differential equation $dy/dx + 2xy = y$	2
8.	Find the general solution of $dy/dx + ay = e^{mx}$	2
9.	Verify that the function y = xsinx is a solution of the differential equation $x\frac{dy}{dx} = y + x\sqrt{x^2 - y^2}$.	2
10.	Find the general solution of the differential equation y logy $dx - x dy = 0$.	2
11.	Show that the differential equation $(x-y) \frac{dy}{dx} = (x+2y)$ is homogeneous and solve it.	2
12.	Find the general solution of the differential equation $x\frac{dy}{dx} + 2y = x^2$	2
13.	Find the general solution of the differential equation $(x+y)\frac{dy}{dx} = 1$	2
14.	It is known that, if the interest is compounded continuously, the principal changes at the rate equal to the product of the rate of bank interest per annum and the principal. Let P denotes the principal at any time t and rate of interest be r% per annum. Based on the above information, answer the following questions Find the value of dP/dt	2
15.	If P_0 be the initial principal, then find the solution of differential equation formed in given situation.	2
16.	Polio drops are delivered to 50K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation $dy/dx = k(50-y)$ where x denotes the number of weeks and y the number of children who have been given the drops.	

17.	Find the solution of the differential equation $dy/dx = k(50-y)$?	2
18.	Find the value of c in the particular solution given that y(0)=0 and k=0.049 .	2
19.	Find the general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$.	2
20.	Solve that the differential equation $\frac{dy}{dx} + y = \cos x - \sin x$.	2
21.	If $y = 5e^{7x} + 6e^{-7x}$, then show that $\frac{d^2y}{dx^2} = 49y$.	2
22.	If $y = -A\cos(3x) + B\sin(3x)$, then show that $\frac{d^2y}{dx^2} = -9y$.	2
23.	Solve the differential equation $cos\left(\frac{dy}{dx}\right) = a, a \in \mathbb{R}$	2
24.	Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$	2
25.	$\frac{dx}{\left(\frac{d^2y}{dx^2}\right)^2} + \left(\frac{dy}{dx}\right)^3 + x^4 = 0$ Find the solution of $\frac{dy}{dx} = 2^{y-x}$	2
26.	Find the solution of $\frac{dy}{dx} = 2^{y-x}$	2
27.	Find the sum of the order and the degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = \sin y$	2
28.	Find the sum of the order and the degree of the differential equation $y^{\prime\prime\prime}+2y^{\prime\prime}+y^{\prime}=0$	2
29.	Find the solution of the differential equation $Log(\frac{dy}{dx}) = ax + by$	2
30.	Find the solution of the differential equation $\frac{dy}{dx} = x + \frac{y}{x}$ satisfying the condition $y(1) = 1$.	2
31.	Solve the differential equation $(e^{x} + 1)ydy = e^{x}(y + 1)dx.$	2
32.	Solve $\frac{dy}{dx} + 2xy = y$	2
33.	Find the particular solution of the differential equation $\frac{dy}{dx} = y \tan x$, when $y(0)=1$	2

ANS	W	ERS:

Q. NO	ANSWER	MARKS
1.	dy/dx=2y-10	
2.	Equation of a hyperbola is given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \dots \dots \dots \dots \dots (1)$ Differentiating both the sides, we get	
	$\frac{2x}{a^2} - \frac{2yy}{b^2} = 0$ By solving this equation we get $xy\left(\frac{d^2y}{dx^2}\right) + xy^2 - yy' = 0$	
3.	Y=asin(x+b) Differentiating w.r.t. x, we get, $\frac{dy}{dx} = (x+b).1$	
	Again differentiating and by solving we get $\frac{d^2y}{dx^2} + y = 0$	
4.	2 ^{-x} -2 ^{-y} =k	
5.	$log(x^{2}+y^{2})+2\frac{y}{x} = \frac{\pi}{2} log2$ (e ⁶ +9)/2	
6.	(e ⁶ +9)/2	
7.	y=-ce ^(x-x2)	
8.	(a+m)ye ^{mx} +e ^{-ax}	
9.	Given y=xsinx Then $\frac{dy}{dx}$ =xcosx+sinx	2
	LHS= $x \frac{dy}{dx}$ =x(xcosx+sinx).	
	RHS= y +x $\sqrt{x^2 - y^2}$ =xsinx +x $\sqrt{x^2 - x^2 sin^2 x}$ = x(xcosx+sinx) Therefore y=x.sinx is a solution of $x\frac{dy}{dx}$ = y +x $\sqrt{x^2 - y^2}$.	
10.	given y logydx – xdy = 0. We get $\frac{dx}{x} = \frac{dy}{y \log y}$ Integrate it, we get	2
11.	General solution $y = e^{cx}$ This is of the form $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$.	2
	Put y=vx ,then $\frac{dy}{dx} = v + x \frac{dv}{dx}$ Gives $\left(\frac{v-1}{v^2+v+1}\right) dv = \frac{-dx}{x}$ Integrate it, we get $\frac{1}{2}\log(v^2+v+1) + \frac{1}{2}\log x^2 = \sqrt{3} \tan^{-1}\left(\frac{2v+1}{\sqrt{3}}\right) + c$ Put $v = \frac{y}{x}$, we get	

	General solution $\log x^2 + xy + y^2 = 2\sqrt{3} \tan^{-1} \left(\frac{x+2y}{\sqrt{3}x}\right) + c_1$	
12.	ANS: given differential equation $x\frac{dy}{dx} + 2y = x^2$	2
	Then $\frac{dy}{dx} + \frac{2}{x}y = x$	
	The given equ. is a L.D.E. of the type $\frac{dy}{dx}$ + Py=Q, where P= $\frac{2}{x}$ and Q=x	
	$IF = e^{\int \frac{2}{x} dx} = x^2$	
	solution is given by $yx^2 = \int (x)(x^2)dx + c$	
13.	General solution $y = x^2/4 + cx^{-2}$. ANS:given differential equation is $(x+y)\frac{dy}{dx} = 1$	2
	Then $\frac{dx}{dy}$ -x=y	2
	The given equ. is a L.D.E. of the type $\frac{dx}{dy}$ +Px=Q, where P=-1 and Q=y	
	IF= $e^{\int -1dy} = e^{-y}$ Solution is given by x.IF= $\int Q \times IFdy+C$	
	$xe^{-y} = \int ye^{-y} dy + C = -ye^{-y} - e^{-y} + C$	
1.4	Gives general solution $(x+y+1) = c e^{y}$.	2
14.	$\frac{dp}{dt} = \frac{Pr}{100}$	2
15.	$\frac{at}{bar} \frac{100}{p} rt$	2
	$\log\left(\frac{p}{p_0}\right) = \frac{rt}{100}$	
16.	$-\log 50 - y = kx + C$	2
17.	$log \frac{1}{50}$	2
	50	
18.		2
18. 19.	$\gamma = 50(1 - e^{-kx})$	2 2
-	$\frac{y=50(1-e^{-kx})}{\frac{dy}{dx} = e^{x+y}}$	
-	$\frac{y=50(1-e^{-kx})}{\frac{dy}{dx} = e^{x+y}}$	
-	$\frac{y=50(1-e^{-kx})}{\frac{dy}{dx} = e^{x+y}}$	
-	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$	
	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$	
-	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$	
	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$	
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = 1, Q = \cos x - \sin x$	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = 1, Q = \cos x - \sin x$ Integrating Factor (1. F) = $e^{\int pdx} = e^{\int dx} = e^{x}$	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = 1, Q = \cos x - \sin x$ Integrating Factor (I. F) = $e^{\int pdx} = e^{\int dx} = e^{x}$ Hence, the sol ⁿ is :	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = 1, Q = \cos x - \sin x$ Integrating Factor (1. F) = $e^{\int pdx} = e^{\int dx} = e^{x}$	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = 1, Q = \cos x - \sin x$ Integrating Factor (I.F) = $e^{\int pdx} = e^{\int dx} = e^{x}$ Hence, the sol ⁿ is: $y \times I.F = \int_{c} Q \times I.F dx$	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = 1, Q = \cos x - \sin x$ Integrating Factor (I. F) = $e^{\int pdx} = e^{\int dx} = e^{x}$ Hence, the sol ⁿ is :	2
19.	$y=50(1-e^{-kx})$ $\frac{dy}{dx} = e^{x+y}$ $\Rightarrow \frac{dy}{dx} = e^{x} \cdot e^{y}$ $\Rightarrow \frac{dy}{e^{y}} = e^{x} dx$ $\Rightarrow e^{-y} dy = e^{x} dx$ $\Rightarrow \int e^{-y} dy = \int e^{x} dx$ $\Rightarrow -e^{-y} = e^{x} + c$ $\frac{dy}{dx} + y = \cos x - \sin x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = 1, Q = \cos x - \sin x$ Integrating Factor (1. F) = $e^{\int p dx} = e^{\int dx} = e^{x}$ Hence, the sol ⁿ is : $y \times 1.F = \int Q \times 1.F dx$ $\Rightarrow ye^{x} = \int e^{x} (\cos x - \sin x) dx$	2

24	r 7r + c - 7r - c	2
21.	$y = 5e^{7x} + 6e^{-7x} \dots (i)$	2
	Differentiating both sides w. r. t. x	
	$\frac{dy}{dx} = 7(5e^{7x} - 6e^{-7x})$	
	Differentiating both sides w. r. t. x	
	$\frac{d^2 y}{dx^2} = 49(5e^{7x} + 6e^{-7x})$	
	$\Rightarrow \frac{d^2 y}{dx^2} = 49y \text{ (proved)}(\text{from }(i))$	
22.	$y = -A\cos(3x) + B\sin(3x)\dots(i)$	2
	Differentiating both sides w. r. t. x	
	$\frac{dy}{dx} = 3(A\sin(3x) + B\cos(3x))$	
	$\Rightarrow \frac{d^2 y}{dx^2} = 9(A\cos(3x) - B\sin(3x))$	
	$\Rightarrow \frac{d^2 y}{dx^2} = -9(-A\cos(3x) + B\sin(3x))$	
	$\rightarrow \frac{dx^2}{dx^2} = -9(-A\cos(3x) + B\sin(3x))$	
	$\Rightarrow \frac{d^2 y}{dx^2} = -9y \text{ (from (i))}$	
23.	(dy) -	2
_	$\cos\left(\frac{dy}{dx}\right) = a, a \in \mathbb{R}$	
	$\Rightarrow \frac{dy}{dx} = \cos^{-1} a$	
	$ \Rightarrow dx = \cos^{-1} a. dx $	
	$\Rightarrow \int dy = \cos^{-1} a \int dx$	
	$\Rightarrow y = x \cos^{-1} a + c$ $\frac{dy}{dx} = \frac{1 + y^2}{1 + x^2}$	
24.	$\frac{dy}{dt} = \frac{1+y^2}{t^2}$	2
	Separating the variable and integrating both sides,	
	$\int \frac{dy}{1+y^2} = \int \frac{dx}{1+x^2}$	
	$tan^{-1}y = tan^{-1}x + C$, which is the general solution of given equation	
25.	Order =2, Degree = 2, Difference of order and degree = 0	2
26.	Rewriting the equation as	2
	$\frac{dy}{dx} = \frac{2^{y}}{2^{x}}$ $\frac{dy}{2^{y}} = \frac{dx}{2^{x}}$	
	$dx 2^{x}$	
	$\frac{dy}{dx} = \frac{dx}{dx}$	
	Integrating both sides	
	$\int \frac{dy}{2x} = \int \frac{dx}{2x}$	
	$\begin{array}{cccc} J & Z^y & J & Z^z \\ 2^{-y} & 2^{-x} \end{array}$	
	$\int \frac{dy}{2^{y}} = \int \frac{dx}{2^{x}} -\frac{2^{-y}}{\log 2} = -\frac{2^{-x}}{\log 2} + C_{1}$	
	$\log 2 \log 2 z^{-x} - 2^{-y} = C$	
27.	Which is the general solution of given equation.	
	Order =2, Degree = 1, Sum of order and degree = 3	2
28.	Order =3, Degree = 1, Sum of order and degree = 4	2

29.	. Given, $\log(\frac{dy}{dx}) = ax + by$	2
	$\frac{dy}{dx} = e^{ax + by} [: \cdot \log_b a = c = a = b^c]$	
	$ \sum_{y=1}^{dx} \frac{dy}{dx} = e^{ax} \cdot e^{by} = \frac{dy}{dx} = e^{ax} dx $	
	$\int dx = e^{-by} dy = e^{ax} dx$	
	On integrating both sides, we get	
	$\int e^{-by} dy = \int e^{ax} dx$	
	$\blacktriangleright \frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + C [: \cdot \int e^{ax+b} dx = \frac{e^{ax+b}}{a} + C]$	
	$ \ge \frac{e^{ax}}{a} + \frac{e^{-by}}{b} + C = 0 $	
	Which is required solution	
30.	Given, equation can be rewritten as $\frac{Dy}{dx} = \frac{1}{x} \cdot y = 1$	2
	Here, $P = -\frac{1}{x}$ and $Q = 1$	
	: IF = $e^{\int P dx} = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$	
	: Required solution is $Y^{(1)} = \int_{-\infty}^{1} dx + C = \int_{-\infty}^{1} $	
	$Y\left(\frac{1}{x}\right) = \int \frac{1}{x} dx = \log x + C [:\cdot y \cdot IF = \int (Q \cdot IF) dx + C]$	
	Since, $y(1) = 1$ and $C = 1$: $y = x \log x + x$	
31.	We have, $(e^x + 1)ydy = e^x(y + 1)dx$	2
	On separating the variables, we get	
	$\frac{y}{y+1}dy = \frac{e^x}{e^x+1}dx$	
	On integrating both sides, we get	
	$\int \frac{y}{y+1} dy = \int \frac{e^x}{e^x + 1} dx$	
	$ightarrow \int y + 1 - \frac{1}{y} + 1 dy = \int \frac{e^x}{e^x + 1} dx$	
	$\searrow \int (1 - \frac{1}{y+1}) dy = \int \frac{e^x}{e^{x+1}} dx$	
	> $y - \log(y+1) = \log(e^x + 1) + C$	
	which is required solution.	
32.	Given that,	2
52.	$xdx-ye^y\sqrt{1+x^2}dy=0 =>xdx = ye^y\sqrt{1+x^2}dy$	2
	$\Rightarrow \frac{x}{\sqrt{1+x^2}} dx = y e^{dy}$	
	Integrating both sides, we get	
	$\int x/\sqrt{1+x^2} dx = \int y \cdot e^y dy$	
	$= \frac{1}{2} \int \frac{2x}{\sqrt{1+x^2}} dx = \left[y \cdot \int e^y dy - \int \left(\frac{d}{dy}(y) \cdot \int e^y dy\right) dy\right]$	
	Let $I_1 = \int 2x/\sqrt{1+x^2} dx$	
	Putting $1 + x^2 = t \Rightarrow 2x dx = dt$ [on differentiating] \therefore I ₁ = $\int dt/t^{1/2} = \int t^{-1/2} dt$	
	$= t^{-1/2+1} - \frac{1}{2} + 1 = t^{-1/2} / \frac{1}{2} = 2t^{1/2}$	
	$=2(1+x^2)^{1/2}$	
	Now, $\frac{1}{2} \cdot 2(1+x^2)^{\frac{1}{2}} = y \cdot e^y - e^y + C$ => $(1+x^2)^{\frac{1}{2}} = e^y(y-1) + C$	
	$->$ (1+x) $-e^{-(y-1)} + C$ When x = 0, then y = 1	
	·	

: $(1+0)^{1/2} = e^1(1-1) + C$ C = 1	
So required solution is given by	
(1+x) = C(y-1) + 1	
We have, $\frac{dy}{y} = $ ytanx	2
On separating variable both sides, we get	
$\frac{dy}{y} = \tan x dx$	
On intergrating both sides, we get	
$\int dy/y = \int tanx dx$	
$\Rightarrow \log y = \log \sec x + \log C$	
$\Rightarrow \log y = \log(C \operatorname{secx})$ [:·loga+logb = logab]	
\Rightarrow y = C secx(i)	
Now, it is given that $x = 0$ and $y = 1$	
\therefore 1 =C sec0	
=> 1 =C	
On putting $C = 1$ in Eq. (i), we get	
$\mathbf{Y} = \mathbf{secx}.$	
Which is required solution.	
	$C = 1$ So, required solution is given by $(1+x^2)^{1/2} = e^{y}(y-1) + 1$ We have, $\frac{dy}{y} = y \tan x$ On separating variable both sides, we get $\frac{dy}{y} = \tan x dx$ On intergrating both sides, we get $\int dy/y = \int \tan x dx$ $=> \log y = \log \sec x + \log C$ $=> \log y = \log(C \sec x) [:\cdot\log a + \log b = \log ab]$ $=> y = C \sec x \qquad \dots(i)$ Now, it is given that $x = 0$ and $y = 1$ $\therefore \qquad 1 = C \sec 0$ $=> \qquad 1 = C$ On putting $C = 1$ in Eq. (i), we get $Y = \sec x$.

CHAPTER-9 DIFFERENTIAL EQUATIONS 03 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	For each of the given differential equation, find a particular solution satisfying the given condition: $dy/dx = y \tan x$; $y = 1$ when $x = 0$	3
2.	Form the differential equation of the family of parabolas having vertex at origin and axis along positive Y-axis.	3
3.	Write the solution of the differential equation $\frac{dy}{dx} = 2^{-y}$.	3
4.	Solve the differential equation $dy/dx + 1 = e^{x^+y}$	3
5.	Solve: $ydx - xdy = x^2 ydx$	3
6.	Q3 Solve the differential equation $dy/dx = 1 + x + y^2 + xy^2$, when y = 0, x = 0.	3
7.	Find the equation of the curve passing through the point (2, 0) whose differential equation is $x(x^2 - 1)\frac{dy}{dx} = 1$	3
8.	Show that the given differential equation is homogeneous $x^2dy+(xy+y^2)dx=0$ and find its particular solution, given that, $x = 1$ when $y = 1$	3
9.	Find the particular solution satisfying the given condition: $\frac{dy}{dx}$ +2ytanx= sinx; y=0 when $x=\frac{\pi}{3}$.	3
10.	Find the equation of curve passing through the origin given that the slope of the tangent to the curve at any point (x,y) is equal to the sum of the coordinates of the point.	3
11.	Find the particular solution of the differential equation $2ye^{y/x}dx + (y - 2xe^{\frac{x}{y}})dy=0$ given that x=0 when y=1	3
12.	Find the equation of a curve passing through the point (0,2), given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.	3
13.	Solve the differential equation $(y + 3x^2)\frac{dx}{dy} = x$.	3
14.	Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$, given that $y = 0$ when $x = 1$.	3
15.	Solve the differential equation $(1 + x^2)dy + 2xydx = \cot x dx$.	3
16.	Verify that the function $y = a \cos x + b \sin x$, where $a, b \in \mathbf{R}$ is a solution of the differential equation $\frac{d^2y}{dx^2} + y = 0$	3
17.	Find the general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$	3
18.	Find the equation of a curve passing through the point (-2,3), given that the	3

	slope of the tangent to the curve at any point (x,y) is $\frac{2x}{y^2}$	
	$\begin{array}{c} 20 \\ 15 \\ 10 \\ 5 \\ -1 \end{array}$	
19.	Find the particular solution of the differential equation	3
	X dx -ye ^y $\sqrt{1 + x^2}$ dy=,given that y=1,when x=0	
20.	For the differential equation given below, find a particular solution satisfying the given	3
	condition $(x+1)\frac{dy}{dx} = 2e^{-y} + 1$; y =0 when x =0.	
21.	Solve the differential equation $(1+x^2)\frac{dy}{dx}+2xy-4x^2=0$	3
	Subject to the initial condition $y(0) = 0$.	

Q. NO 1.	ANSWER Differentiating equation we get	MARKS
1.	$\frac{dy}{dx} = ytanx$ $\frac{dy}{y} = tanxdx$	
	Integrating both side and by solving we get ycosx=x Putting x=0 and y = 1 we get	
	$1 \times cos0 = c$	
	Putting $c=1$ we get $yosx = 1$ This is the required solution.	
2.	We know that, equation of parabola having vertex at origin and axis along positive Y- axis is	
	$x^2 = day$, where a is the parameter(i)	
	X' (0, 0) $F(0, a)$ X	
	on differentiating equation (1) w.r.t x we get $2x = 4ay'$ 2x	
	$4a = \frac{2x}{y'}\dots\dots\dots\dots(ii)$	
	On substituting the value of 4a from Eq. (ii) to Eq. (i), we get $2r$	
	$x^2 = \frac{2x}{y'}y$	
	=> xy' - 2y = 0, which is required solution.	
3.	Given differential equation is $\frac{dy}{dx} = 2^{-y}$	
	On separating the variables, we get $2^y = dx$	
	On integrating both sides, we get $\int 2^{y} dy = \int d\mathbf{x}$	
	$\Rightarrow \frac{2^{y}}{\log 2} = x + c_1$ $\Rightarrow 2^{y} = x \log 2 + c_1 \log 2$	
л	$\Rightarrow 2^{y} = x \log 2 + c (c = c_1 \log 2)$	
4.	$(x-c)e^{(x+y)} + 1 = 0$	
5.	y=kxe ^{-x2} /2	
6.	$y=tan(x+x^2/2)$	

ANSWERS:

7.	Given differential equation is $x(x^2 - 1)\frac{dy}{dx} = 1$	3
	un a	C
	Then dy= $\frac{dx}{x(x^2-1)}$ Integrate it, we get $y=\frac{1}{2}\log(\frac{x^2-1}{x^2})+C$	
	Substituting y=0 and x=2 we get c= $-\frac{1}{2}log\frac{3}{4}$	
	Particular solution $y = \frac{1}{2} log(\frac{x^2-1}{x^2}) - \frac{1}{2} log \frac{3}{4}$	
8.	ANS: given differential equation is $x^2dy+(xy+y^2)dx=0$	3
	This is of the form $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$.	
	Put y=vx ,then $\frac{dy}{dx}$ =v+x $\frac{dv}{dx}$	
	Gives $\left(\frac{1}{v^2+2v}\right) dv = \frac{-dx}{r}$	
	Integrate it, we get	
	$\log\left \left(\frac{v}{v+2}\right)x^2\right = \log c^2$	
	Put $v = \frac{y}{r}$, we get $\frac{x^2 y}{2r+y} = A$	
	When $x=1$, $y=1$ we get	
	Particular solution $y+2x=3x^2y$.	
9.	ANS: given $\frac{dy}{dx}$ +2ytanx= sinx	3
	The given equ. is a L.D.E. of the type $\frac{dy}{dx}$ +Py=Q, where P=2tanx and Q=sinx	
	$IF = e^{\int 2tanxdx} = \sec^2 x,$	
	General solution is given by y.IF= $\int Q \times IF dx + c$	
	y. $\sec^2 x = \int sinx. \sec^2 x dx + c = \sec x + c$ put y=0 and $x = \frac{\pi}{2}$ we get c=-2	
	Particular solution $y = \cos x - 2 \cos^2 x$.	
10.	$X+y+1=e^x$	3
11.	$2e^{\frac{x}{y}} + \log y = 2$	3
12.	$y = A_x - 2a^x$	3
13.	$(y+3x^2)\frac{dx}{dy} = x$ $dy y+3x^2$	
	$(y + 3x)\frac{dy}{dy} = x$	
	$\Rightarrow \frac{dy}{dx} = \frac{y + 3x^2}{x}$ $\Rightarrow \frac{dy}{dx} - \frac{y}{x} = 3x \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$	
	dx x dy y	
	$\Rightarrow \frac{1}{dx} - \frac{1}{x} = 3x \dots (i)$	
	$\frac{dy}{dt} + Py = Q \dots (ii)$	
	ax On comparison, we get	
	$P = -\frac{1}{x}, Q = 3x$	
	Å	
	Integrating Factor (I. F) = $e^{\int p dx} = e^{\int -\frac{dx}{x}} = e^{-\log x } = e^{\log \frac{1}{x} } = \frac{1}{x}$	
	Hence, the sol ⁿ is :	
	$y \times I.F = \int Q \times I.F dx$	
	$\implies \frac{y}{x} = \int 3x \cdot \frac{1}{x} dx$	
	$\Rightarrow \frac{y}{x} = \int 3dx$	
	$\Rightarrow \frac{y}{2} = 3x + c$	

14.	$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2$ $\Rightarrow \frac{dy}{dx} = (1 + x^2) + y^2 (1 + x^2)$ $\Rightarrow \frac{dy}{dx} = (1 + x^2)(1 + y^2)$ $\Rightarrow \frac{dy}{1 + y^2} = (1 + x^2) dx$ $\Rightarrow \int \frac{dy}{1 + y^2} = \int (1 + x^2) dx$	
	$\Rightarrow \tan^{-1} y = x + \frac{x^3}{3} + c$ It is given that $y = 0$ when $x = 1$ $\therefore 0 = 1 + \frac{1}{3} + c$ $\Rightarrow c = -\frac{4}{3}$	
	Hence, the complete sol ⁿ is : $\tan^{-1} y = x + \frac{x^3}{3} - \frac{4}{3}$	
15.	$\tan^{-y} = x + \frac{3}{3} - \frac{3}{3}$ $(1 + x^{2})dy + 2xydx = \cot x dx$ $\Rightarrow (1 + x^{2})\frac{dy}{dx} + 2xy = \cot x$ $\Rightarrow \frac{dy}{dx} + \frac{2xy}{1 + x^{2}} = \frac{\cot x}{1 + x^{2}} \dots (i)$ $\frac{dy}{dx} + Py = Q \dots (ii)$ On comparison, we get $P = \frac{2x}{1 + x^{2}}, Q = \frac{\cot x}{1 + x^{2}}$ Integrating Factor (I. F) = $e^{\int pdx} = e^{\int \frac{2xdx}{1 + x^{2}}} = e^{\log 1 + x^{2} } = e^{\log 1 + x^{2} }$ Hence, the sol ⁿ is : $y \times I. F = \int Q \times I. F dx$ $\Rightarrow y(1 + x^{2}) = \int \frac{\cot x}{(1 + x^{2})} \dots (1 + x^{2}) dx$ $\Rightarrow y(1 + x^{2}) = \int \cot x dx$	
16.	$y = a \cos x + b \sin x$ On differentiating both sides with respect to x, we get $\frac{dy}{dx} = -a \sin x + b \cos x$ $\frac{d^2 y}{dx^2} = -a \cos x - b \sin x$ Now we get $\frac{d^2 y}{dx^2} + y = -a \cos x - b \sin x + a \cos x + b \sin x = 0$ Therefore, the given function is a solution of the given differential equation.	3

47		
17.	Given differential equation can be rewritten as	3
	$\frac{dy}{dx} = e^x \cdot e^y$	
	$e^{-y}dy = e^x dx$	
	On integrating both sides, we get	
	$\int e^{-y} dy = \int e^x dx$	
	$\int -e^{-y} = e^{x} + C_{1}$	
	$e^x + e^{-y} = C$	
18.	We know that the slope of the tangent to the curve is given by $\frac{dy}{dx}$	3
	Hence, as per condition $\frac{dy}{dx} = \frac{2x}{y^2}$	
	The above equation can be rewritten as	
	$y^2 dy = 2x dx$	
	On integrating both sides, we get	
	$\int y^2 dy = \int 2x dx$ $\frac{y^3}{3} = x^2 + C$	
	$\int v^3$	
	$\frac{3}{3} = x^2 + C$	
	Substituting x=-2 and y=3 we get C=5	
	Hence the equation of the required curve is	
	$\frac{y^3}{3} = x^2 + 5 \Rightarrow y = (3x^2 + 15)^{\frac{1}{3}}$	
19.	Given that,	3
	$xdx - ye^{y}\sqrt{1+x^{2}} dy = 0 =>xdx = ye^{y}\sqrt{1+x^{2}} dy$	
	$=>\frac{x}{\sqrt{1+x^2}}dx = ye^{y}dy$	
	Integrating both sides, we get $\int x/\sqrt{1+x^2} dx = \int y \cdot e^y dy$	
	$= \sum_{x=1}^{1} \int \frac{2x}{\sqrt{1+x^2}} dx = [y \cdot \int e^{y} dy - \int (d/dy(y) \cdot \int e^{z} dy) dy]$	
	Let $I_1 = \int 2x/\sqrt{1+x^2} dx$	
	Putting $1 + x^2 = t \Rightarrow 2x dx = dt$ [on differentiating]	
	: $I_1 = \int \frac{dt}{t^{1/2}} = \int t^{-1}/2dt$	
	$=\frac{t^{\lambda}-1/2+1}{-\frac{1}{2}+1}=\frac{t^{1}/2}{\frac{1}{2}}=2t^{\lambda/2}$	
	$-\frac{1}{2}+1$ $\frac{1}{2}$	
1	$= 2(1+x^2)^{-1/2}$	
	$= 2(1+x^{2})^{^{n}1/2}$ Now, $\frac{1}{2} \cdot 2(1+x^{2})^{^{n}1/2} = y \cdot e^{y} - e^{y} + C$	
	$= 2(1+x^{2})^{-1/2}$ Now, $\frac{1}{2} \cdot 2(1+x^{2})^{-1/2} = y \cdot e^{y} - e^{y} + C$ $=> (1+x^{2})^{-1/2} = e^{y}(y-1) + C$	
	Now, $\frac{1}{2} \cdot 2(1+x^2)^{1/2} = y \cdot e^y - e^y + C$ => $(1+x^2)^{1/2} = e^y(y-1) + C$ When x = 0, then y = 1	
	Now, $\frac{1}{2} \cdot 2(1+x^2)^{1/2} = y \cdot e^y - e^y + C$ $\Rightarrow (1+x^2)^{1/2} = e^y(y-1) + C$ When $x = 0$, then $y = 1$ $\therefore (1+0)^{1/2} = e^1(1-1) + C$	
	Now, $\frac{1}{2} \cdot 2(1+x^2)^{1/2} = y \cdot e^y - e^y + C$ $=> (1+x^2)^{1/2} = e^y(y-1) + C$ When x = 0, then y = 1 $\therefore (1+0)^{1/2} = e^1(1-1) + C$ => C = 1 So, required solution is given by	
	Now, $\frac{1}{2} \cdot 2(1+x^2)^{1/2} = y \cdot e^y - e^y + C$ $=> (1+x^2)^{1/2} = e^y(y-1) + C$ When x = 0, then y = 1 $\therefore (1+0)^{1/2} = e^1(1-1) + C$ => C = 1	
20.	Now, $\frac{1}{2} \cdot 2(1+x^2)^{n_{1/2}} = y \cdot e^y - e^y + C$ $=> (1+x^2)^{n_{1/2}} = e^y(y-1) + C$ When $x = 0$, then $y = 1$ $\therefore (1+0)^{n_{1/2}} = e^1(1-1) + C$ => C = 1 So, required solution is given by $(1+x^2)^{n_{1/2}} = e^y(y-1) + 1$	3
20.	Now, $\frac{1}{2} \cdot 2(1+x^2)^{n1/2} = y \cdot e^y - e^y + C$ $=> (1+x^2)^{n1/2} = e^y(y-1) + C$ When x = 0, then y = 1 : (1+0)^{n1/2} = e^1(1-1) + C $=> C = 1$ So, required solution is given by $(1+x^2)^{n1/2} = e^y(y-1) + 1$ Given, differential equation is	3
20.	Now, $\frac{1}{2} \cdot 2(1+x^2)^{n_{1/2}} = y \cdot e^y - e^y + C$ $=> (1+x^2)^{n_{1/2}} = e^y(y-1) + C$ When $x = 0$, then $y = 1$ $\therefore (1+0)^{n_{1/2}} = e^1(1-1) + C$ => C = 1 So, required solution is given by $(1+x^2)^{n_{1/2}} = e^y(y-1) + 1$	3

	$=>\frac{e^{\Lambda}y}{e^{\gamma}+2}dy=\frac{dx}{x+1}$	
	On integrating both sides, we get	
	$\int \frac{e^y}{e^{y+2}} \mathrm{d}y = \int \frac{dx}{x} + 1$	
	$\Rightarrow log(e^{y} + 2) = logC(x+1)(i)$	
	$=>e^{y}+2 = C(x+1)$	
	Also given $y = 0$, when $x = 0$	
	On putting $x = 0$ and $y = 0$ in Eq.(i) we get	
	$e^0 + 2 = C(0 + 1)$	
	=> $C = 1 + 2 = 3$	
	On putting C in Eq. (i) we get	
	$=>e^{y}+2=3(x+1)$	
	$=>e^{y}=3x+3-2$	
	$=>e^{y} = 3x + 1 => y = \log(3x + 1)$	
21.	Given, differential equation is	3
	$(1+x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$	5
	ux	
	$=>\frac{dy}{dx}+\frac{2x}{1+x^{2}}y=\frac{4x^{2}}{1+x^{2}}$	
	Which is the equation of the form	
	$\frac{dy}{dx} + Py = Q$	
	Where P = $\frac{2x}{1+x^2}$ and Q = $\frac{4x^2}{1+x^2}$	
	Now, IF = $e \int \frac{2x}{1} + x^2 = e^{\log(1+x^2)} = 1 + x^2$	
	The general solution is	
	$Y(1+x^2) = \int (1+x^2) \frac{4x^2}{(1+x^2)} dx + C$	
	$- (1 + x)y - \int 4x 2ux + C$ - (1 + x ²)y - 4x ³ + C	
	$=> \qquad y = \frac{4x^{3}}{3(1+x^{2})} + C(1+x^{2})^{-1} \qquad \dots(i)$	
	Now, $y(0) = 0 \Longrightarrow 0 = \frac{4 \cdot 0^{3}}{3(1+0^{2})} + C(1+0^{2})^{-1}$	
	=> C = 0	
	Put the value of C in Eq. (i), we get	
	$Y = \frac{4x^3}{3(1+x^2)}$, which is the required solution.	

CHAPTER-9

DIFFERENTIAL EQUATIONS

04 MARKS TYPE QUESTIONS

	MARK
QUESTION rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours	4
(i) The value $\frac{\int 1}{kx} dx$	
(a) $\log x + c$ (b) $\log \log kx + c$ (c) $\frac{1}{k} \log \log x + c$ (d) none	
(ii) If 'N' is the number of bacteria, the corresponding differential equation is (a) $\frac{dN}{dt} = kt$ (b) $\frac{dN}{dt} = kN$	
(d) $\frac{dk}{dN} = t$	
(iii) The general solution is (a) $log log N = kt + c$ (b) $log log Nt = k + c$ (c) $log log N = t$ (d) $log log kt = N + c$	
(iv)The bacteria become 10 times in hours. (a) $5log7$ (b) $\frac{5log10}{log3}$ (c) $\frac{5}{log3}$ (d) none	
It is known that, if the interest is compounded continuously, the principal changes at the rate equal to the produd' of the rate of bank interest per annum and the principal. Let P denotes the principal at any time t and rate of interest be r % per annum Based on the above information, answer the following questions.	4
(i) Find the value of $\frac{dp}{dt}$ (a) $\frac{pr}{pr}$ (b) $\frac{pr}{pr}$ (c) $\frac{pr}{pr}$	
in given situation.	
	number present. Given that the number triples in 5 hours (i)The value $\int \frac{1}{kx} dx$ (a) $\log x + c$ (b) $\log \log kx + c$ (c) $\frac{1}{k} \log \log x + c$ (d) none (ii) If 'N' is the number of bacteria, the corresponding differential equation is (a) $\frac{dx}{dx} = kt$ (b) $\frac{dx}{dx} = kN$ (c) $\frac{dx}{dx} = t$ (iii) The general solution is (a) $\log \log N = kt + c$ (b) $\log \log N = kt + c$ (c) $\log \log N = k + c$ (d) $\log \log k = N + c$ (iv) The bacteria become 10 times in hours. (a) $5\log 27$ (b) $\frac{5\log 210}{\log 3}$ (c) $\frac{5}{\log 3}$ (d) none It is known that, if the interest is compounded continuously, the principal changes at the rate equal to the product of the rate of bank interest per annum and the principal. Let P denotes the principal at any time t and rate of interest be $r = 6 \text{ per num}$ Based on the above information, answer the following questions. (i) Find the value of $\frac{dx}{dt}$ (a) $\frac{pr}{100}$ (b) $\frac{fy}{100}$ (c) $\frac{pr}{20}$ (d) $\frac{pr}{20}$ (ii). If P_0 be the initial principal, then find the solution of differential equation formed

	Rs.100 double itself?	
	(a) 12.728 years (b) 14.789 years (c) 13.862 years (d) 15.872 years (iz) How much will P_{2} 1000 he worth at 5% interact after 10 years 2 (c) 5 - 1 (48)	
	(iv)How much will Rs.1000 be worth at 5% interest after 10 years? (e0.5 = 1.648). (a) Rs.1648(b) Rs 1500 (c) Rs 1664 (d) Rs 1572	
3.		4
0.		
	A rumour on whatsapp spreads in a population of 5000 people at a rate proportional to the	
	product of the number of people who have heard it and the number of people who have not.	
	Also, it is given that 100 people initiate the rumour and a total of 500 people know the	
	rumour after 2 days. (i)If yet denote the number of people who know the rumour at an instant t, then maximum	
	value of y(t) is	
	(a) 500 (b) 100 (c) 5000 (d) none of these	
	$\cdots dy$	
	(ii) $\frac{dy}{dt}$ is proprtional to	
	(a) $(y - 5000)$ (b) $y(y - 500)$ (c) $y(500 - y)$ (d) $y(5000 - y)$	
	(iii) The value of $y(0)$ is (a)100 (b) 500 (c) 600 (d) 200	
	(a) 100 (b) 500 (c) 600 (d) 200 (iv) The value of $y(2)$ is	
	(a)100 (b) $500(c) 600(d) 200$	
4.	Polio drops are delivered to 50K children in a district. The rate at which polio drops are given is	4
	directly proportional to the number of children who have not been administered the drops. By the	
	end of 2nd week half the children have been given the polio drops. How many will have been given	
	the drops by the end of 3rd week can be estimated using the solution to the differential equation $dydx = K (50 - y)$ where x denotes the number of weeks and y the number of children who have	
	been given the drops.	
	1. State the order of the above given differential equation.	
	2. Which method of solving a differential equation can be used to solve $dydx = k (50 - y)$	
	a) Variable separable method	
	b) Solving Homogeneous differential equation	
	c) Solving Linear differential equationd) All of the above	
	3. The solution of the differential equation $dydx = k$ (50 – y) is given by,	
	a) $\log 50 - y = kx + C$	
	b) - $\log 50 - y = kx + C$	
	c) $\log 50 - y = \log kx + C$	
	d) $50 - y = kx + C$	
	4. The value of c in the particular solution given that $y(0)=0$ and $k = 0.049$ is :	1
	a) log 50	

 b) log 1 50 c) 50 d) -50 5. Which of the following solutions may be used to find the number of children who have 	
been given the polio drops? a) $y = 50 - ekx$ b) $y = 50 - e - kx$	
c) $y = 50 (1 - e - k)$ d) $y = 50$ (ekx-1)	
 A Veterinary doctor was examining a sick cat brought by a pet lover. When it was brought to the hospital, it was already dead. The pet lover wanted to find its time of death. He took the temperature of the cat at 11.30 pm which was 94.6 oF. He took the temperature again after one hour; the temperature was lower than the first observation. It was 93.4 oF. The room in which the cat was put is always at 70 oF. The normal temperature of the cat was 98.6 oF when it was alive. The doctor estimated the time of death using Newton law of cooling which is governed by the differential equation: dT dt ∝ (T - 70), where 70 oF is the room temperature and T is the temperatu of the object at time t. Substituting the two differential equations of T and t made, in the solution the differential equation dT dt = k(T - 70) where k is a constant of proportion, time of death is calculated. 1) State the degree of the above given differential equation. 2) Which method of solving a differential equation helped in calculation of the time of death? a) Variable separable method b) Solving Homogeneous differential equation c) Solving Linear differential equation dT dt = k(T - 70) is given by, a) log T - 70 = kt + C b) log T - 70 = kt + C b) log T - 70 = log kt + C c) T - 70 = kt + C d) T - 70 = kt C 5) If t = 0 when T is 72, then the value of c is a) -2 b) 0 c) 2 d) Log 2 	re of
6. In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs 1000 double itself?	4
7. Solve the differential equation: $(xdy-ydx)y \sin\left(\frac{y}{x}\right) = (ydx+xdy)x \cos\left(\frac{y}{x}\right).$	4
8. Find a particular solution of the differential equation $\frac{dy}{dx} + 2y \ tanx = sinx$; $y =$	4
$0 when x = \frac{\pi}{3}.$	
 9. In a bank, principal increases continuously at the rate of r% per year. Find the value of r if F 100 double itself in 10 years(log_e2=0.6931). 	
10. Find the particular solution of the differential equation $\frac{dy}{dx} = -\frac{x+y\cos x}{1+\sin x}$, given that $y = 1$ when $x = 0$	4
11. Solve the differential equation $xdy - ydx = \sqrt{x^2 + y^2}dx$, given that $y = 0$ when $x = 1$	4
12. Find the particular solution of the differential equation	4

	$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$, given that $y = 1$ when $x = 0$	
13.	In a bank, principal increases continuously at the rate of 5% per year. In how many years Rs 1000 double itself ?	4
14.	A Veterinary doctor was examining a sick cat brought by a pet lover. When it was brought to the hospital, it was already dead. The pet lover wanted to find its time of death. He took the temperature of the cat at 11:30pm which wass 94.6° <i>F</i> . He took the temperature again after 1h; the temperature was lower than the first observation. It was 93.4° <i>F</i> . The room in which the cat was put is always at 70° <i>F</i> . The normal temperature of the cat is taken as 98.6° <i>F</i> when it was alive. The doctor estimated the time of time of death using Newton law of cooling which is governed by the differential equation $\frac{dT}{dt} \propto (T - 70)$, where 70° <i>F</i> is the room temperature and Tis the temperature of object at time t. Substituting the two different observations of T and t made, in the solution of the differential equation $\frac{dT}{dt} = k(T - 70)$, where k is a constant of proportion, time of death is calculated. Answer the following questions using the above information. (i)The degree of the above given differential equation is (a)0 (b)1 (c)2 (d)3 (ii)If the temperature was measured 2h after 11:30pm, will time of death change? (a)Yes (b)No (c)Can't say (d)None of these (iii)The solution of the differential equation $\frac{dT}{dt} = k(T - 70)$ is given by, (a)log <i>T</i> -70 = kt + C (b)log <i>T</i> -70 = log kt + C (c)T-70 = kt + C (d) t-70 = kT + C	4
15.	(iv)If t =0 when T is 72, then the value of C is (a)-2 (b)0 (c)2 (d)log2 Consider the differential equation $\frac{dy}{dx}$ + 2ytanx = sinx.	4
	Answer the following questions which are based on above information. (i)Find the values of Pand Q, if the given differential equation can be written in the form of $\frac{dy}{dx}$ +Py = Q. (ii)Find the integrating factor of the differential equation. (iii)Find the solution of the differential equation. (iv)If $y(\frac{\pi}{3}) = 0$, then write the relation between x and y.	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	i)(c) ii) (b). iii)(a). iv)(b)	
2.	i)(b)Here, P denotes the principal at any time t and the rate of interest be r% per annum compounded continuously, then according to the law given in the problem, we get $\frac{pr}{100}$ (ii) (a). (iii) (c). (iv) (d)	
3.	i)c)Since, size of population is 5000. Hence, Maximum value of y(t) is 5000. ii) (d) : Clearly, according to given information $\frac{dy}{dt} = ky(5000 - y)$,where k is the constant of proportionality. iii)(a) y(0)=100 iv)(b) y(2)=500	
4.	 Degree is 1 (a) Variable separable method No (a) log T -70 = kt + C (d) log 2 	
5.	1) Order is 1 2) (a) Variable separable method 3. (b)- $\log 50-y = kx + C$ 4. (b) $\log 1 50$ 5. (c) $y = 50 ((1 - e^{-k}))$	
6.	Let P be the principal at any time t. According to the given problem, $\frac{dP}{dt} = \left(\frac{5}{100}\right) P$ $\frac{dP}{p} = \frac{dt}{20}$ Integrate it, we get General solution P=Ce ^t / ₂₀ , Substituting P=1000 when t=0 we get c=1000 Let t years be the time required to double the principal. Then $2000 = 1000e^{\frac{t}{20}} \text{ gives}$ $t=20\log_{e}2$	4
7.	ANS: This is of the form $\frac{dy}{dx} = g\left(\frac{y}{x}\right)$. Put y=vx, then $\frac{dy}{dx} = v + x \frac{dv}{dx}$ Gives $\left(\frac{vsinv-cosv}{vcosv}\right) dv = 2 \frac{dx}{x}$ Integrate it, we get $\frac{secv}{vx^2} = c$ Put $v = \frac{y}{x}$, we get General solution $\sec\left(\frac{y}{x}\right) = cxy$	4
8.	$y = cosx - 2cos^2 x$	4
9.	rt	4
5.	P=Ce ¹⁰⁰ ,r=6.931%	4

10	$dy = [r + y \cos r]$	4
10.	$\frac{dy}{dx} = -\left[\frac{x + y\cos x}{1 + \sin x}\right]$	4
	$\frac{dx}{dy} = \frac{1}{\cos x} \frac{1}{y} - x \qquad (1)$	
	$\Longrightarrow \frac{dy}{dx} + \frac{\cos x y}{1 + \sin x} = \frac{-x}{1 + \sin x} \dots (i)$	
	$\frac{dy}{dx} + Py = Q \dots (ii)$	
	ax On comparison, we get	
	$P = \frac{\cos x}{1 + \sin x}, Q = \frac{-x}{1 + \sin x}$	
	$1 + \sin x'^{\circ}$ $1 + \sin x$	
	Integrating Factor (I. F) = $e^{\int p dx} = e^{\int \frac{\cos x}{1+\sin x}} = e^{\log 1+\sin x } = 1 + \sin x$ Hence, the sol ⁿ is :	
	$y \times I.F = \int Q \times I.F dx$	
	$\Rightarrow y(1 + \sin x) = \int \frac{-x}{(1 + \sin x)} \cdot (1 + \sin x) dx$	
	$\Rightarrow y(1 + \sin x) = -\int x dx$	
	$\Rightarrow y(1 + \sin x) = -\frac{x^2}{2} + c$	
	It is given that $y = 1$ when $x = 0$ $\therefore 1 = 0 + c$	
	$\Rightarrow c = 1$	
	Hence, the complete sol ⁿ is :	
	$y(1 + \sin x) = -\frac{x^2}{2} + 1$	
11.	$xdy - ydx = \sqrt{x^2 + y^2}dx$	4
	$\Rightarrow xdy = \left(y + \sqrt{x^2 + y^2}\right)dx$	
	$\Rightarrow \frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x} \dots (i)$ Let, $f(x, y) = \frac{y + \sqrt{x^2 + y^2}}{x}$	
	$\Rightarrow \frac{dx}{dx} = \frac{1}{x} \frac{dx}{dx}$	
	Let $f(x, y) = \frac{y + \sqrt{x^2 + y^2}}{y + \sqrt{x^2 + y^2}}$	
	x	
	$\therefore f(\lambda x, \lambda y) = \frac{\lambda y + \sqrt{\lambda^2 x^2 + \lambda^2 y^2}}{\lambda x} = \frac{y + \sqrt{x^2 + y^2}}{x} = f(x, y)$ Hence f is a homogeneous function of degree 0	
	Hence, f is a homogeneous function of degree 0.	
	Let, $y = vx$	
	Differentiating both sides w. r. t. x	
	$\frac{dy}{dx} = v + x \frac{dv}{dx}$	
	Hence, eq ⁿ (i) becomes	
	$v + x \frac{dv}{dx} = \frac{vx + \sqrt{x^2 + v^2 x^2}}{x}$ $\implies v + x \frac{dv}{dx} = v + \sqrt{1 + v^2}$	
	$v + x \frac{dx}{dx} = \frac{x}{x}$	
	$\Rightarrow v + x \frac{dv}{dx} = v + \sqrt{1 + v^2}$	
	$dv \frac{dx}{\sqrt{1+v^2}}$	
	$\Rightarrow x \frac{dx}{dx} = \sqrt{1 + v^2}$	
	$\Rightarrow x \frac{dv}{dx} = \sqrt{1 + v^2}$ $\Rightarrow \frac{dv}{\sqrt{1 + v^2}} = \frac{dx}{x}$	
	$\sqrt{1 + v^2} x$ $\int dv \int dx$	
	$\Rightarrow \int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x}$	
	$\Rightarrow \log \left v + \sqrt{1 + v^2} \right = \log x + c$	
		1

	1	1
	$\Rightarrow \log \left \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} \right = \log x + c$	
	It is given that $y = 0$ when $x = 1$ $\therefore 0 = 0 + c$	
	$\Rightarrow c = 0$	
	Hence, the complete sol ⁿ is :	
	$\log \left \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} \right = \log x $	
12.	Given differential equation can be rewritten as	4
	$\frac{dx}{dy} = \frac{x^2 + y^2}{xy} = \frac{x}{y} + \frac{y}{x} = \left(\frac{x}{y}\right) + \left(\frac{1}{\frac{x}{y}}\right) = f\left(\frac{x}{y}\right) - \dots - (i)$	
	Which is a homogeneous differential equation	
	Now. Let $\frac{x}{y} = v \Rightarrow x = vy$	
	On differentiating wrt y on both sides, we get $\frac{dx}{dy} = v + y \frac{dv}{dy}(ii)$	
	using (ii) in (i), we get d_{12} 1	
	$v + y \frac{dv}{dy} = v + \frac{1}{v}$	
	using (ii) in (i), we get $v + y \frac{dv}{dy} = v + \frac{1}{v}$ $\int v dv = \int \frac{dy}{y}$ $\frac{v^2}{v} = \log v + C$	
	$\frac{v^2}{2} = \log y + C$	
	$\frac{2}{x^2}$	
	$\frac{\frac{v^2}{2} = \log y + C}{\frac{x^2}{2y^2} = \log y + C}$	
	y=1, when $x=0$ so we get $C=0$	
	Hence, particular solution of the given differential equation is	
	$\frac{x^2}{2y^2} = \log y \implies x^2 = 2y^2 \log y$	
13.	Let P be the principal at any time t.	4
	So, $\frac{dp}{dt} = \left(\frac{5}{100}\right)P \implies \frac{dp}{dt} = \frac{P}{20}$ (i)	
	Separating the variables	
	$\frac{dp}{P} = \frac{dt}{20}$ (ii)	
	Integrating both sides	
	$\log P = \frac{t}{22} + C_1$	
	$\log P = \frac{t}{20} + C_1$ $P = e^{\frac{t}{20}} \cdot e^{C_1}$	
	$P = e^{20} \cdot e^{c_1}$	
	1	

	L	
	$P = C e^{\frac{l}{20}}$	
	Now P=1000, when t=0, we get	
	$P = 1000 e^{\frac{t}{20}}$	
	Let t years be the time required to double the Principal. Then	
	t	
	$2000 = 1000 e^{\frac{t}{20}}$	
	$\Rightarrow t = 20 log_e 2$	
14.	Given, differential equation can be rewritten as	4
	$F(x,y) = \frac{dy}{dx} = \frac{y}{2x - x \log(\frac{y}{x})}$	
	Verify $F(\lambda x, \lambda y) = F(x,y)$	
	On putting y = vx and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, then given equation	
	Becomes	
	$=>$ $v + x \frac{dv}{dx} = \frac{vx}{2x - x \log(\frac{vx}{x})}$	
	$dx = 2x - x \log(\frac{1}{x})$	
	$=>$ $x \frac{dv}{dx} = \frac{v}{2 - \log v} - V$	
	$=>\int 2 - \log v / v (\log v - 1) dv = \int dx / x$	
	On putting log v = t and $\frac{1}{v}$ dv = dt, we get	
	$\int 2 - t/t - 1 dt = \log \mathbf{x} + C$	
	$\int 2 - t/t - 1 dt = \log x + C$ => $\int (\frac{1}{t-1} - 1) dt = \log x + C$	
	=> log(t-1) - t = log x + C => log[log4)-1] - log4 = log x + C	
	$\Rightarrow \log[(\log \frac{y}{x}) - 1] - \log(\frac{y}{x}) = \log x + C$	
	$\Rightarrow \log[(\log \frac{y}{x}) - 1] - \log y = C$	
	$\therefore \qquad \log \left \frac{\frac{\log y}{x-1}}{y} \right = C$	
	y + -C	
15	(i) Ciner differential equation is	
15.	(i) Given, differential equation is	4
	$\frac{dy}{dx} + 2y\tan x = \sin x$	
	Which is a linear differential equation of the form dy , P_{y} , Q_{y}	
	$\frac{dy}{dx} + Py = Q.$	
	Here, P = 2tanx and Q = sinx (ii) IF = $e^{\int P dx} = e^{\int 2tanx dx}$	
	(ii) IF $=e^{\int tanx dx}$ $=e^{2\log \sec x }$	
	$=e^{J} = e^{2\log se x }$	
	$= e^{-\log x} = \sec^2 x \qquad [: \cdot e^{\log(x)} = f(x)]$	
	(iii) The solution of differential equation is given by	
	$y \cdot \sec^2 x = \int \sec^2 x \cdot \sin x dx + C$	
	$= \sum_{x \to x} \frac{y \cdot \sec^2 x}{1 - \frac{\sin x}{\cos^2 x}} = \frac{\int \sin x}{\cos^2 x} dx \cdot \sin x dx + C$	
	Put $\cos x = t$, then $-\sin x dx = dt$ $\therefore y \cdot \sec^2 x = -\int dt/t^2 + C$	
	$\begin{array}{rcl} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	
	$= y \cdot \sec^{2} x = -1\frac{t^{-1}}{(-1)} + C$	

$$y \cdot \sec^{2}x = \frac{1}{t} + C$$

$$y \cdot \sec^{2}x = \frac{1}{\cos x} + C$$

$$y \cdot \sec^{2}x = \sec x + C$$

$$= > \qquad y = \frac{1}{\sec x} + \frac{c}{\sec^{2}x} \qquad [\text{dividing each term by } \sec^{2}x]$$

$$= > \qquad y = \cos x + C \cdot \cos^{2}x$$
(iv) It given that $y = 0$, when $x = \frac{\pi}{3}$

$$: \qquad 0 = \cos \frac{\pi}{3} + C \cdot \cos^{2} \frac{\pi}{3}$$

$$= > \qquad 0 = \frac{1}{2} + C \cdot \frac{1}{4} \qquad [: \cdot \cos \frac{\pi}{3} = \frac{1}{2}]$$

$$= > \frac{-1}{2} = \frac{c}{4} \implies C = -2$$

$$: \cdot \text{ The required particular solution is}$$

$$= >y = \cos x - 2\cos^{2} x$$

CHAPTER-9 DIFFERENTIAL EQUATIONS 05 MARK TYPE QUESTIONS

Q. NO	QUESTION	MARK
1.	Form the differential equation of the family of circles having centre on y-axis and radius 3 units.	5
2.	Solve $(x^2 - y^2)dx + 2xydy = 0$	5
3.	$\frac{dy}{dx} + \frac{y}{x} = 0$ where 'x' denotes the percentage population in a city and 'y' denotes the area for living healthy life of population. Find the particular solution when x=100,y=1. Is higher density of population harmful? Justify your answer	5
4.	Solve the differential equation (xdy-ydx)y $sin(y/x) = (ydx+xdy)x cos(y/x)$.	5
5.	Find the equation of a curve passing through $(0, \frac{\pi}{4})$ and satisfying the differential equation Sinx.cosy dx + cosx.siny dy=0	5
6.	Find the particular solution of the differential equation $\frac{dy}{dx}$ +ycotx =2x+x ² cotx (x≠0) given that y=0 when x= $\frac{\pi}{2}$.	5
7.	Show that the differential equation $2ye^{\frac{x}{y}}dx + (y - 2xe^{\frac{x}{y}})dy = 0$ is homogeneous and find its particular solution, given that, x= 0 when y = 1	5
8.	In a lab, if in a culture, the bacteria count is 1,00,000.The number is increased by 10 % in 2 hours. In how many hours will the count reach 2, 00, 000, if the rate of growth of bacteria is proportional to the number present?	5
9.	The population of a village increase continuously at the rate proportional to the number of its inhabitants present at any time .If the population of the village was 20000 in 2018 and 25000 in the year 2023, what will be the population of the village in 2028?	5
10.	Find the particular solution of the differential equation $x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y \sin\left(\frac{y}{x}\right) = 0$, given that $y(1) = \frac{\pi}{2}$.	5
11.	$(x^2 + y^2)dy = xydx$. If $y(1) = 1$ and $y(x_0) = e$, then find the value of x_0 .	5
12.	Find the general solution of the differential equation $ydx - (x + 2y^2)dy = 0$	5
13.	Find the particular solution of the differential equation, satisfying the given condition (x + y)dy + (x - y)dx = 0; $y = 1$ when $x = 1$	5
14.	Find the particular solution of the differential equation $x\frac{dy}{dx} = y -xtan(\frac{y}{x})$, given that $y = \pi/4$ at $x = 1$.	5
15.	Solve the differential equation	5

$xdy - ydx = \sqrt{x^2 + y^2} dx,$	
Given that $y = 0$, when $x = 1$.	

ANSWERS:

Q. NO	ANSWER	MARKS
1.	As the centre of the circle lies on the y-axis. Let the center be (0,k).	
	Thus the equation of the circles with center $(0,k)$ and radius 3 is,	
	$(x-0)^2 + (y-k)^2 = 3^2$	
	Differentiating and by solving we get $(x^2 - 9)y^2 + x^2 = 0$	
	Which is required solution.	
2.	$x^2 - y^2 = Cx$	
3.	$x^{2} - y^{2} = Cx$ $\frac{dy}{dx} + \frac{y}{x} = 0$ $\frac{dy}{dx} = -\left(\frac{y}{x}\right)$	
	$\frac{dy}{dx} = -\left(\frac{y}{x}\right)$	
	Differentiating and by solving we get xy=100	
4.	$\sec(y/x) = cxy$	
5.	$\cos y = \sec x/\sqrt{2}$	
6.	The given equ. is a L.D.E. of the type $\frac{dy}{dx}$ +Py=Q, where P=cotx and Q=2x+x ² cotx.	5
	IF= $e^{\int cotx dx} = \sin x$,	
	General solution is given by $ysinx = \int (2x + x^2 cotx) sinx dx + c$	
	Gives $ysinx = x^2sinx + c$,	
	Substituting y=0 and x= $\frac{\pi}{2}$ we get c= $\frac{-\pi^2}{4}$	
	Particular solution $y=x^2 - \frac{\pi^2}{4sinx}$	
7.	This is of the form $\frac{dx}{dy} = g\left(\frac{x}{y}\right)$.	5
	Put x=vy ,then $\frac{dx}{dy}$ =v+y $\frac{dv}{dy}$	
	Gives $2e^{v}dv = \frac{-dy}{v}$	
	Integrate it, we get $2e^{v} = -\log y + c$	
	Put $v = \frac{x}{y}$, we get	
	General solution $2e^{\frac{x}{y}} + \log y = c$,	
	Substituting $x=0$ and $y=1$ we get $c=2$	
	Particular solution $2e^{\frac{x}{y}} + \log y = 2.$	
8.		5
	$t = \frac{2\log 2}{\log \frac{11}{10}}$	
9.	31250	5
10.	$x\frac{dy}{dx}\sin\left(\frac{y}{x}\right) + x - y\sin\left(\frac{y}{x}\right) = 0$ $\Rightarrow \frac{dy}{dx} = \frac{y\sin\left(\frac{y}{x}\right) - x}{x\sin\left(\frac{y}{x}\right)} \dots (i)$	5
	$dy y\sin\left(\frac{y}{x}\right) - x$	
	$\Rightarrow \frac{1}{dx} = \frac{1}{x \sin\left(\frac{y}{x}\right)} \dots (i)$	

Let,
$$f(x, y) = \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)}$$

 $\therefore f(\lambda x, \lambda y) = \frac{\lambda y \sin\left(\frac{\lambda y}{\lambda x}\right) - \lambda x}{x \sin\left(\frac{\lambda y}{\lambda x}\right)} = \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)} = f(x, y)$
Hence, f is a homogeneous function of degree 0.
Let, $y = vx$
Differentiating both sides w.r.t. x
 $\frac{dy}{dx} = v + x \frac{dx}{dx}$
Hence, eq"(i) becomes
 $v + x \frac{dy}{dx} = \frac{vx \sin v - x}{x \sin v} - v$
 $\Rightarrow vx \frac{dy}{dx} = \frac{vx \sin v - x}{x \sin v} - v$
 $\Rightarrow x \frac{dy}{dx} = \frac{vx \sin v - x - vx \sin v}{x \sin v}$
 $\Rightarrow x \frac{dy}{dx} = \frac{vx \sin v - x}{x \sin v}$
 $\Rightarrow x \frac{dy}{dx} = \frac{-x}{x \sin v}$
 $\Rightarrow x \frac{dy}{dx} = -\frac{1}{x}$
 $\Rightarrow \sin v dv = -\int \frac{dx}{x}$
 $\Rightarrow -\cos v = -\log|x| + c$
 $\Rightarrow -\cos(\frac{x}{x}) = -\log|x| + c$
It is given that $y = \frac{\pi}{x}$ when $x = 1$
 $\therefore -\cos(\frac{x}{2}) = -\log|x|$
 $\Rightarrow -\cos(\frac{x}{2}) = \log|x|$
11.
 $(x^2 + y^2) dy = xy dx$
 $\Rightarrow \frac{dy}{dx} = \frac{xy}{x^2 + y^2}$
Let, $f(x, y) = \frac{\lambda x + \lambda y}{x^2 + y^2} = \frac{xy}{x^2 + y^2} = f(x, y)$
Hence, f is a homogeneous function of degree 0.
Let, $y = vx$
 $\frac{dy}{dx} = v + x \frac{dy}{dx}$

	Hence, eq ⁿ (i) becomes	
	$v + x\frac{dv}{dx} = \frac{x.vx}{x^2 + v^2x^2}$	
	$\implies v + x \frac{dv}{dx} = \frac{v}{1 + v^2}$	
	$dx = 1 + v^2$ dv = v	
	$\implies x\frac{dv}{dx} = \frac{v}{1+v^2} - v$	
	$\Rightarrow x \frac{dv}{dx} = \frac{v - v(1 + v^2)}{1 + v^2}$	
	$\rightarrow x \frac{dx}{dx} = \frac{1 + v^2}{1 + v^2}$	
	$\Rightarrow x \frac{dv}{dt} = \frac{v - v - v^3}{1 + v^2}$	
	$\Rightarrow x \frac{dv}{dx} = \frac{v - v - v^3}{1 + v^2}$ $\Rightarrow x \frac{dv}{dx} = \frac{-v^3}{1 + v^2}$	
	$\Rightarrow x \frac{1}{dx} = \frac{1}{1 + v^2}$	
	$\implies \frac{(1+v^2)dv}{dt} = -\frac{dx}{dt}$	
	$v^3 - x$	
	$\Rightarrow \frac{(1+v^2)dv}{v^3} = -\frac{dx}{x}$ $\Rightarrow \int \left[\frac{1}{v^3} + \frac{1}{v}\right]dv = -\int \frac{dx}{x}$	
	$\Rightarrow -\frac{1}{2\nu^2} + \log \nu = -\log x + c$	
	$\Rightarrow -\frac{x^2}{2y^2} + \log\left \frac{y}{x}\right = -\log x + c$	
	It is given that $y = 1$ when $x = 1$	
	$\therefore -\frac{1}{2} + 0 = 0 + c$	
	$\Rightarrow c = -\frac{1}{2}$	
	Hence, the complete sol ⁿ is :	
	$-\frac{x^2}{2y^2} + \log\left \frac{y}{x}\right = -\log x - \frac{1}{2}$	
	Now, $x = x_0$ and $y = e$, then	
	$-\frac{x_0^2}{2e^2} + \log\left \frac{e}{x_0}\right = -\log x_0 - \frac{1}{2}$	
	$\Rightarrow -\frac{x_0^2}{2e^2} + \log\left \frac{e}{x_0}\right + \log x_0 + \frac{1}{2} = 0$	
	$\Rightarrow -\frac{x_0^2}{2e^2} + \log\left \frac{e}{x_0} \cdot x_0\right + \frac{1}{2} = 0$	
	$\Rightarrow -\frac{1}{2e^2} + \log \left \frac{1}{x_0} \cdot x_0 \right + \frac{1}{2} = 0$	
	$\Rightarrow -\frac{x_0^2}{100} + \log e + \frac{1}{100} = 0$	
	$\Rightarrow -\frac{x_0^2}{2e^2} + \log e + \frac{1}{2} = 0$ $\Rightarrow -\frac{x_0^2}{2e^2} + 1 + \frac{1}{2} = 0$ $\Rightarrow -\frac{x_0^2}{2e^2} = -\frac{3}{2}$	
	$\Rightarrow -\frac{x_0}{2e^2} + 1 + \frac{1}{2} = 0$	
	$x_0^2 - 3$	
	$\rightarrow -\frac{1}{2e^2} - \frac{1}{2}$	
	$\Rightarrow x_0^2 = 3e^2$ $\Rightarrow x_0 = \pm \sqrt{3}e$	
12.	The given differential equation can be rewritten as	5
	$\frac{dx}{dy} - \frac{x}{y} = 2y$	
	Which is a linear differential equation of the type	
	$\frac{dx}{dy} + Px = Q$, where $P = \frac{-1}{y}$ and $Q = 2y$	
	ay y y	

	1	1
	Therefore, I.F.= $e^{\int \frac{-1}{y} dy} = e^{-\log y} = \frac{1}{y}$	
	Hence, the solution of the given differential equation is	
	$x\frac{1}{y} = \int (2y)\left(\frac{1}{y}\right)dy + C$ $\frac{x}{y} = 2y + C$	
	$\frac{x}{y} = 2y + C$	
	$x = 2y^2 + Cy$	
	Which is a general solution of the given differential equation.	
13.	The given differential equation can be rewritten as	5
	$\frac{dy}{dx} = \frac{y-x}{y+x} = \frac{\frac{y}{x}-1}{\frac{y}{x}+1} = f\left(\frac{y}{x}\right)$	
	Which is a homogeneous differential equation	
	Now. Let $\frac{y}{x} = v \Rightarrow y = vx$	
	On differentiating wrt x on both sides, we get	
	$\frac{dy}{dx} = v + x\frac{dv}{dx}(ii)$	
	Putting (ii) in (i) we get	
	$\frac{dv}{v+r} = \frac{v-1}{v-1}$	
	$v + x \frac{1}{dx} - \frac{1}{v+1}$	
	$x\frac{dv}{dx} = \frac{v-1}{v+1} - v = \frac{v-1-v-v}{v+1}$	
	$\int v + 1 dv = \int dx$	
	$\int \frac{1}{v^2 + 1} dv = -\int \frac{1}{x}$	
	$v + x \frac{dv}{dx} = \frac{v - 1}{v + 1}$ $x \frac{dv}{dx} = \frac{v - 1}{v + 1} - v = \frac{v - 1 - v^2 - v}{v + 1}$ $\int \frac{v + 1}{v^2 + 1} dv = -\int \frac{dx}{x}$ $\frac{1}{2} \int \frac{2v}{v^2 + 1} dv + \int \frac{dv}{v^2 + 1} = -\int \frac{dx}{x}$	
	$\frac{1}{2}\log(v^2+1) + \tan^{-1}v = -\log x + C_1$	
	$log\left(\frac{y^2}{x^2} + 1\right) + 2\tan^{-1}\frac{y}{x} = -2\log x + 2C_1$	
	$\log(x^2 + y^2) + 2 \tan^{-1}\frac{y}{y} = C$	
	y=1, when x=1 so we get C=log 2 + $\frac{\pi}{2}$	
	Hence, particular solution of the given differential equation is	
	$\log(x^2 + y^2) + 2\tan^{-1}\frac{y}{x} = \log 2 + \frac{\pi}{2}$	
	x 2	
14.	.: Particular solution is given by	5
	$x \cdot \sin(\frac{y}{x}) = \frac{1}{\sqrt{2}}$	
15.	$y + \sqrt{x^2 + y^2} = x^2$	5
_	which is the required solution $y = x$	

As Per Revised CBSE Curriculum 2023-24

Classroom Teaching & Animated Videos Playlists

We take immense pleasure in serving you. Now, revel in our seamless online services completely free of charge. view our animated and classroom teaching Playlists customized for students from grade 1 to 12,Covering a wide range of subjects to enhance your comprehension and knowledge. Simply click on the provided playlist links to access **Playlists based on the latest NCERT Syllabus for 2023-**24.

content includes **Competency-Based** Our Questions, Assertion-Reason Questions, Previous Year Questions (PYQ), and Study-Based Questions to enhance your Case learning experience. For the most up-to-date videos, consider subscribing to our YouTube channel at https://www.youtube.com/@PrincipalsHandbookandDiaryadditionall y, you're encouraged to join our expanding WhatsApp community group to stay updated with the latest curriculum-related content and updates.

Nageen Group of Schools

We are committed to enriching your educational journey!!!

ANIMATED & CLASSROM TEACHING VIDEOS PLAYLISTS

(As per revised CBSE Curriculum- 2023-24)

ANIMATED VIDEOSPLAYLI	STS (CLASS 1)
Class 1 EVS(EnglishLanguage)(CBSE)	Click here for playlist
Class 1 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 1 EVS (HindiLanguage)(CBSE)	Click here for Playlist
Class 1 Mathematics(Hindi Language)(CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYL	ISTS (CLASS 2)
Class 2 EVS (EnglishLanguage)(CBSE)	Click here for Playlist
Class 2 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 2 EVS(HindiLanguage)(CBSE)	Click here for Playlist
Class 2 Mathematics (Hindi Language)(CBSE)	Click here for Playlist
ANIMATED VIDEOS PLAYL	ISTS (CLASS 3)
Class 3 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 3 EVS (EnglishLanguage)(CBSE)	Click here for Playlist
Class 3 EVS (HindiLanguage)(CBSE)	Click here for Playlist
Class 3 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist
	· · · · · · · · · · · · · · · · · · ·
ANIMATED VIDEOS PLAYL	ISTS (CLASS 4)
Class 4 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 4 EVS(EnglishLanguage)(CBSE)	Click here for Playlist
Class 4 Mathematics (HindiLanguage)(CBSE)	Click here for Playlist
Class 4 EVS (HindiLanguage)(CBSE)	Click here for Playlist
CLASSROOM TEACHING VIDEOS	PLAYLISTS (CLASS 4)
Class 4 General Science (CBSE)	Click here for Playlist
	· · · · · · · · · · · · · · · · · · ·
ANIMATED VIDEOS PLAYL	ISTS (CLASS 5)
Class 5 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist
Class 5 Science (EnglishLanguage)(CBSE)	Click here for Playlist
Class 5 Mathematics(HindiLanguage)(CBSE)	Click here for Playlis
Class 5 Science (HindiLanguage)(CBSE)	Click here for Playlis
CLASSROOM TEACHING VIDEOS	PLAYLISTS (CLASS 5)
	PLAYLISTS (CLASS 5) Click here for Playlist

ANIMATED VIDEOS PLAYLISTS	(CLASS 6)			
Class 6 Mathematics (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 6 Social Science (EnglishLanguage)(CBSE)	Click here for Playlist			
Class 6 Science (EnglishLanguage) (CBSE)	Click here for Playlist			
Class 6 Mathematics (Hindi Language)(CBSE)	Click here for Playlist			
Class 6 Science All Chapters (CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 6)				
Class 6 Mathematics (CBSE)	Click here for Playlist			
Class 6 Social Science (CBSE)	Click here for Playlist			
Class 6 Sanskrit (CBSE)	Click here for Playlist			
Class 6 Hindi (CBSE)	Click here for Playlist			
Class 6 Science (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS				
Class 7 Science(CBSE)	Click here for Playlist			
Class 7 Mathematics(CBSE)	Click here for Playlist			
Class 7 Social Science(CBSE)	Click here for Playlist			
Class 7 Mathematics(CBSE)	Click here for Playlist			
Class 7 Science (CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 7) Class 7 Science (CBSE) Click here for Playlist				
Class 7 Hindi (CBSE)	Click here for Playlist			
Class 7 Sanskrit (CBSE)	Click here for Playlist			
Class 7 Social Science (CBSE)	Click here for Playlist			
Class 7 Mathematics (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS	(CLASS 8)			
Class 8 Science(CBSE)	Click here for Playlist			
Class 8 Mathematics(CBSE)	Click here for Playlist			
Class 8 Social Science(CBSE)	Click here for Playlist			
Class 8 Mathematics(CBSE)	Click here for Playlist			
Class 8 Science(CBSE)	Click here for Playlist			
CLASSROOM TEACHING VIDEOS PLAY				
Class 8 Hindi (CBSE)	Click here for Playlist			
Class 8 Sanskrit (CBSE)	Click here for Playlist			
ANIMATED VIDEOS PLAYLISTS				
Class 9 Biology(CBSE)	Click here for Playlist			
Class 9 Physics(CBSE)	Click here for Playlist			
Class 9 Chemistry(CBSE)	Click here for Playlist			
Class 9 Social Science (CBSE)	<u>Click here for Playlist</u>			

Class 9 Mathematics (CBSE)	Click here for Playlist
Class 9 Science (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 9)		
Class 9 Social Science (CBSE)	Click here for Playlist	
Class 9 Mathematics(CBSE)	Click here for Playlist	
Class 9 English (CBSE)	Click here for Playlist	
Class 9 Hindi (CBSE)	Click here for Playlist	

	ANIMATED	VIDEOS	PLAYLISTS	CLASS 1	L O)
-					

Class 10 Biology (CBSE)	Click here for Playlist
Class 10 Physics (CBSE)	Click here for Playlist
Class 10 Chemistry (CBSE)	Click here for Playlist
Class 10 Social Science (CBSE)	Click here for Playlist
Class 10 Mathematics(CBSE) (English Language)	Click here for Playlist
Class 10 Mathematics(CBSE) (Hindi Language)	Click here for Playlist
Class 10 Science(CBSE) (Hindi Language)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 10)		
Class 10 English (CBSE)	Click here for Playlist	
Class 10 Hindi (CBSE)	Click here for Playlist	
Class 10 Mathematics (CBSE)	Click here for Playlist	
Class 10 Social Science (CBSE)	Click here for Playlist	
Class 10 Magical Science Board Exam Preparation in 1 min (CBSE)	Click here for Playlist	
Class 10: Science (CBSE)	Click here for Playlist	

ANIMATED VIDEOS PLAYLISTS (CLASS 11)		
Class 11 Physics (CBSE) (English Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (English Language)	Click here for Playlist	
Class 11 Mathematics(CBSE) (English Language)	Click here for Playlist	
Class 11 Accountancy (CBSE) (English Language)	Click here for Playlist	
Class 11 Business Studies (CBSE) (English Language)	Click here for Playlist	
Class 11 Statistics (CBSE) (English Language)	Click here for Playlist	
Class 11 Biology (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Mathematics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Physics (CBSE) (Hindi Language)	Click here for Playlist	
Class 11 Chemistry (CBSE) (Hindi Language)	Click here for Playlist	
Class 11Micro Economy (CBSE) (English Language)	Click here for Playlist	

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 11)		
Class 11Mathematics (CBSE) Click here for Playlist		
Class 11 Accounts (CBSE)	<u>Click here for Playlist</u>	
Class 11 Business Studies (CBSE)	Click here for Playlist	

Class 11 Hindi (CBSE)	Click here for Playlist
Class 11 Psychology (CBSE)	Click here for Playlist
Class 11 Economics (CBSE)	Click here for Playlist
Class 11 Physics (CBSE)	Click here for Playlist
Class 11 Chemistry (CBSE)	Click here for Playlist
Class 11 English (CBSE)	Click here for Playlist
Class 11 Biology (CBSE)	Click here for Playlist
Class 11 Biology Shorts (CBSE)	Click here for Playlist

ANIMATED VIDEOS PLAYLISTS (CLASS 12)

Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Chemistry (CBSE)	Click here for Playlist
Class 12 Biology(CBSE)	Click here for Playlist
Class 12 Macro Economy (CBSE)	<u>Click here for Playlist</u>
Class 12Economic (CBSE)	Click here for Playlist
Class 12 Mathematics (CBSE)	<u>Click here for Playlist</u>
Class 12 Accountancy (CBSE)	Click here for Playlist
Class 12 Business Studies (CBSE)	<u>Click here for Playlist</u>
Class 12 Physics (CBSE)	<u>Click here for Playlist</u>
Class 12 Mathematics (CBSE)	Click here for Playlist
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 Chemistry (CBSE)	Click here for Playlist

CLASSROOM TEACHING VIDEOS PLAYLISTS (CLASS 12)	
Class 12 CHEMISTRY (CBSE)	Click here for Playlist
Class 12 Business Studies (CBSE)	Click here for Playlist
Class 12 Hindi (CBSE)	Click here for Playlist
NEET Biology in 1 min	Click here for Playlist
Class 12 History (CBSE)	Click here for Playlist
Class 12 Political Science (CBSE)	Click here for Playlist
Class 12 Physics (CBSE)	Click here for Playlist
Class 12 Biology (CBSE)	Click here for Playlist
Class 12 : Accounts (CBSE)	Click here for Playlist

SCHOOL OF EDUCATORS

You will get Pre- Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here .Join Your Subject WhatsApp Group.

Rules & Regulations of the Group

- 1. No introduction
- 2. No Good Morning/Any wish type message
- 3.No personal Chats & Messages
- 4. No Spam
- 5. You can also ask your difficulties here.

Just get learning resources & post learning resources. Helpline number only WhatsApp: +91-95208-77777

Julearn /

Why Artham Resource Material?

Resource materials for teachers and students are essential tools for effective teaching and learning. They provide valuable information, guidance, and support to both teachers and students, making the teaching and learning process more efficient and productive.

For teachers, Artham resource materials include lesson plans, instructional guides, assessment tools, professional development materials, and teaching aids. These materials are well researched and created according to 2023-24 NEP and NCERT guidelines.

For students, resource materials can include textbooks, study guides, homework assignments, reference books, online learning platforms, and educational videos. These materials can be obtained from school libraries, educational publishers, online resources, and teachers.

Both teachers and students can also benefit from Artham educational resources which are free and openly licensed educational materials that can be used and shared for teaching and learning. Artham resource material include textbooks, courses, lesson plans, and multimedia resources that are available online.

In summary, resource materials are critical components of effective teaching and learning. They provide a wealth of information and support that can enhance the quality of education and help students achieve academic success.

Teachers and students can also purchase these resources from the links provided with every resource.

JOIN TELEGRAM GROUP/CHANNELS FOR CLASS WISE HIGH QUALITY RESOURCE MATERIAL

SOE CBSE Groups

- <u>Click to Join CBSE Group...All classes</u>
- <u>Click to Join SOE CBSE Kindergarten Group</u>
- <u>Click to Join SOE CBSE Class 1 Group</u>
- <u>Click to Join SOE CBSE Class 2 Group</u>
- Click to Join SOE CBSE Class 3 Group
- Click to Join SOE CBSE Class 4 Group
- Click to Join SOE CBSE Class 5 Group
- Click to Join SOE CBSE Class 6 Group
- Click to Join SOE CBSE Class 7 Group
- Click to Join SOE CBSE Class 8 Group
- Click to Join SOE CBSE Class 9 Group
- <u>Click to Join SOE CBSE Class 10 Group</u>
- <u>Click to Join SOE CBSE Class 11 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE CBSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE CBSE Class 12 (Science) Group</u>
- <u>Click to Join SOE CBSE Class 12(Commerce) Group</u>

- <u>Click to Join SOE CBSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>
- <u>Click to Join SOE CBSE Project File Group for Class 9th to 12th All Subjects</u>

SOE ICSE Groups

- <u>Click to Join SOE ICSE Kindergarten Group</u>
- <u>Click to Join SOE ICSE Class 1 Group</u>
- <u>Click to Join SOE ICSE Class 2 Group</u>
- <u>Click to Join SOE ICSE Class 3 Group</u>
- <u>Click to Join SOE ICSE Class 4 Group</u>
- <u>Click to Join SOE ICSE Class 5 Group</u>
- Click to Join SOE ICSE Class 6 Group
- Click to Join SOE ICSE Class 7 Group
- <u>Click to Join SOE ICSE Class 8 Group</u>
- <u>Click to Join SOE ICSE Class 9 Group</u>
- Click to Join SOE ICSE Class 10 Group
- <u>Click to Join SOE ICSE Class 11 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 11 (Humanities) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Science) Group</u>
- <u>Click to Join SOE ICSE Class 12(Commerce) Group</u>
- <u>Click to Join SOE ICSE Class 12 (Humanities) Group</u>
- <u>Click to Join SOE JEE/NEET Group</u>
- <u>Click to Join SOE CUET Group</u>
- <u>Click to Join SOE NDA, OLYMPIAD, NTSE Group</u>
- <u>Click to Join SOE School Principal Professional Development Group</u>
- <u>Click to Join SOE School Teacher Professional Development Group</u>

Nageen CBSE Channels

- <u>Click to Join Nageen CBSE Kindergarten Channel</u>
- <u>Click to Join Nageen CBSE Class 1 Channel</u>
- <u>Click to Join Nageen CBSE Class 2 Channel</u>
- <u>Click to Join Nageen CBSE Class 3 Channel</u>
- <u>Click to Join Nageen CBSE Class 4 Channel</u>
- Click to Join Nageen CBSE Class 5 Channel
- <u>Click to Join Nageen CBSE Class 6 Channel</u>
- Click to Join Nageen CBSE Class 7 Channel
- Click to Join Nageen CBSE Class 8 Channel
- Click to Join Nageen CBSE Class 9 Channel
- Click to Join Nageen CBSE Class 10 Channel
- Click to Join Nageen CBSE Class 11 (Science) Channel
- Click to Join Nageen CBSE Class 11 (Humanities) Channel
- Click to Join Nageen CBSE Class 11 (Commerce) Channel
- Click to Join Nageen CBSE Class 12 (Science) Channel
- <u>Click to Join Nageen CBSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen CBSE Class 12 (Humanities) Channel</u>

- Click to Join JEE/NEET Channel
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>

Nageen ICSE Channels

- <u>Click to Join Nageen ICSE Kindergarten Channel</u>
- <u>Click to Join Nageen ICSE Class 1 Channel</u>
- <u>Click to Join Nageen ICSE Class 2 Channel</u>
- <u>Click to Join Nageen ICSE Class 3 Channel</u>
- <u>Click to Join Nageen ICSE Class 4 Channel</u>
- <u>Click to Join Nageen ICSE Class 5 Channel</u>
- <u>Click to Join Nageen ICSE Class 6 Channel</u>
- <u>Click to Join Nageen ICSE Class 7 Channel</u>
- <u>Click to Join Nageen ICSE Class 8 Channel</u>
- <u>Click to Join Nageen ICSE Class 9 Channel</u>
- <u>Click to Join Nageen ICSE Class 10 Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 11 (Humanities) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Science) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Commerce) Channel</u>
- <u>Click to Join Nageen ICSE Class 12 (Humanities) Channel</u>
- <u>Click to Join JEE/NEET Channel</u>
- <u>Click to Join CUET Channel</u>
- <u>Click to Join NDA, OLYMPIAD, NTSE Channel</u>